Tìm giá trị lớn nhất của biểu thức sau:\(B=-17-\left(2x-16\right)^2-\left(3y+9\right)^2\)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm giá trị nhỏ nhất của các biểu thức sau
A=\(x^2-4x+1\) \(B=4x^2+4x+11\)
\(C=\left(x-1\right)\left(x+3\right)\left(x+2\right)\left(x+6\right)\)
\(D=2x^2+y^2-2xy+2x-4y+9\)
Tìm giá trị lớn nhất của các biểu thức sau
\(E=5-8x-x^2\)
\(F=4x-x^2+1\)
cho các số thực dương x,y thỏa mãn \(\sqrt{y}\left(y+1\right)-6x-9=\left(2x+4\right)\sqrt{2x+3}-3y\). Tìm giá trị lớn nhất của biểu thức M = xy + 3y - 4\(x^2\) - 3
Đặt \(\left\{{}\begin{matrix}\sqrt{2x+3}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\)
\(\Rightarrow b\left(b^2+1\right)-3a^2=\left(a^2+1\right)a-3b^2\)
\(\Rightarrow a^3-b^3+3a^2-3b^2+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a-b\right)\left(3a+3b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+3a+3b+1\right)=0\)
\(\Leftrightarrow a=b\Rightarrow\sqrt{2x+3}=\sqrt{y}\)
\(\Rightarrow y=2x+3\)
\(\Rightarrow M=x\left(2x+3\right)+3\left(2x+3\right)-4x^2-3\) tới đây chắc chỉ cần bấm máy
Cho các số thực dương x;y thỏa mãn: \(6x+9-\sqrt{y}.\left(y+1\right)=3y-\left(2x+4\right).\sqrt{2x+3}\). Tìm giá trị nhỏ nhất của biểu thức: \(D=xy+3y-4x^2-3\)
1. Tìm giá trị lớn nhất của biểu thức sau: \(H=\frac{1}{\left|8x+16\right|+1}\)
2. Tìm giá trị nhỏ nhất của biểu thức sau:\(K=\frac{1}{-\left|x-3\right|-1}\)
3. Tìm giá trị nhỏ nhất của biểu thức sau:\(L=\frac{1}{-\left|2x-2\right|-1}\)
Giải mau mau giùm mink nhé các bn, thanks nhiều
Đáy lớn là
26 + 8 = 34 M
chIỀU CAO là
26 - 6 = 20 m
Diện tích thửa ruộng là
{ 34 + 26 } x 20 : 2 = 800 m2
Đáp số 800 m2
1.Để H đạt GTLN
=>|8x+16|+1 đạt giá trị dương nhỏ nhất
=>|8x+16|+1=1
=>MaxH=1
Dấu "=" xảy ra khi x=-2
Vậy...
1.Để H đạt GTLN
=>|8x+16|+1 đạt giá trị dương nhỏ nhất
=>|8x+16|+1=1
=>MaxH=1
Dấu "=" xảy ra khi x=-2
Vậy...
Tìm giá trị lớn nhất
\(B=-\left|1-2x\right|-2\left|x-3\right|-\sqrt{3y^2+16}+2021\)
ĐKXĐ : \(y\ge\frac{4}{\sqrt{3}}\) hoặc \(y\le\frac{-4}{\sqrt{3}}\)
\(B=-\left|1-2x\right|-2\left|x-3\right|-\sqrt{3y^2-16}+2021\)
\(B=-\left(\left|1-2x\right|+\left|2x-6\right|\right)-\sqrt{3y^2-16}+2021\)
\(B\le-\left|1-2x+2x-6\right|-0+2021=2016\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\left(1-2x\right)\left(2x-6\right)\ge0\left(1\right)\\3y^2-16=0\left(2\right)\end{cases}}\)
\(\left(1\right)\)
TH1 : \(\hept{\begin{cases}1-2x\ge0\\2x-6\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le\frac{1}{2}\\x\ge3\end{cases}}}\) ( loại )
TH2 : \(\hept{\begin{cases}1-2x\le0\\2x-6\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge\frac{1}{2}\\x\le3\end{cases}\Leftrightarrow}\frac{1}{2}\le x\le3}\)
\(\left(2\right)\)\(\Leftrightarrow\)\(y^2=\frac{16}{3}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}y=\sqrt{\frac{16}{3}}\\y=-\sqrt{\frac{16}{3}}\end{cases}\Leftrightarrow\orbr{\begin{cases}y=\frac{4}{\sqrt{3}}\\y=\frac{-4}{\sqrt{3}}\end{cases}}}\) ( nhận )
Vậy GTNN của \(B\) là \(2016\) khi \(\frac{1}{2}\le x\le3\) và \(y=\frac{4}{\sqrt{3}}\) hoặc \(y=\frac{-4}{\sqrt{3}}\)
-,-
Tìm giá trị lớn nhất của biểu thức sau:
\(F=4-\left|5x-2\right|-\left|3y+12\right|\)
a)tìm giá trị nhỏ nhất của biểu thức:
A= \(\left(2x+\frac{1}{3}\right)^4\)-1
b) Tìm giá trị lớn nhất của biểu thức :
B=\(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\)
Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi
a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)
Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)
\(\Leftrightarrow A\ge-1\)
Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1
Vậy Giá trị nhỏ nhất của A là -1
b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1
e cái gì là em bé à
Tìm giá trị lớn nhất của biểu thức sau:
\(D=4-\left|5x-2\right|-\left|3y+12\right|\)
Tìm giá trị nhỏ nhất , lớn nhất của các biểu thức sau :
a , \(C=6xy-\left(x+3y-5\right)^2-26\)
b, \(D=\left(x+3y-5\right)^2-6xy+26\)