Những câu hỏi liên quan
MT
Xem chi tiết
NT
3 tháng 4 2023 lúc 0:00

b: Phương trình cần tìm là x^2+8x-105=0

=>(x+15)(x-7)=0

=>x=-15 hoặc x=7

c: Phương trình có hai nghiệm u,v thỏa mãn là x^2-2x+9=0

=>PTVN

d: Phương trình có hai nghiệm u,v thỏa mãn là x^2-5x+24=0

=>PTVN

Bình luận (0)
PB
Xem chi tiết
CT
2 tháng 4 2018 lúc 9:47

Đáp án B

Mệnh đề 1 và 2 sai; mệnh đề 3 và 4 đúng.

Bình luận (0)
LA
29 tháng 7 2022 lúc 9:40

D

Bình luận (0)
PB
Xem chi tiết
CT
24 tháng 10 2019 lúc 1:58

Đáp án B

Mệnh đề 1 và 2 sai; mệnh đề 3 và 4 đúng

Bình luận (0)
Xem chi tiết
ZZ
24 tháng 7 2019 lúc 9:07

M N P Q x y U V 1 2 3 4 1 2

Bình luận (0)
HM
Xem chi tiết
NP
Xem chi tiết
NH
23 tháng 9 2015 lúc 21:00

\(\frac{23}{7}=3+\frac{1}{3+\frac{1}{2}}=3+\frac{1}{3+\frac{1}{1+1}}\)

Bình luận (0)
PB
Xem chi tiết
CT
20 tháng 8 2018 lúc 9:05

a) b 3 + 3 b 2 + 2 b 3 + 1 .          b) 0.

Bình luận (0)
PT
Xem chi tiết
NL
8 tháng 5 2023 lúc 0:01

1.

\(cos\left(\widehat{\overrightarrow{u};\overrightarrow{v}}\right)=\dfrac{\overrightarrow{u}.\overrightarrow{v}}{\left|\overrightarrow{u}\right|.\left|\overrightarrow{v}\right|}=\dfrac{10}{10.\sqrt{2}}=\dfrac{1}{\sqrt{2}}\)

\(\Rightarrow\left(\widehat{\overrightarrow{u};\overrightarrow{v}}\right)=45^0\)

2.

a. 

\(\left\{{}\begin{matrix}SA\perp\left(ABC\right)\Rightarrow SA\perp BC\\AB\perp BC\left(gt\right)\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\) (1)

Mà \(BC=\left(SBC\right)\cap\left(ABC\right)\Rightarrow\widehat{SBA}\) là góc giữa (SBC) và (ABC)

\(tan\widehat{SBA}=\dfrac{SA}{AB}=1\Rightarrow\widehat{SBA}=45^0\)

b.

Từ (1) \(\Rightarrow BC\perp AM\)

Mà \(AM\perp SB\left(gt\right)\) \(\Rightarrow AM\perp\left(SBC\right)\) (2)

\(\Rightarrow AM\perp MN\Rightarrow\Delta AMN\) vuông tại M

Từ (2) \(\Rightarrow AM\perp SC\), mà \(SC\perp AN\left(gt\right)\)

\(\Rightarrow SC\perp\left(AMN\right)\) (3)

Lại có \(SA\perp\left(ABC\right)\) theo giả thiết

\(\Rightarrow\) Góc giữa (AMN) và (ABC) bằng góc giữa SA và SC hay là góc \(\widehat{ASC}\)

\(AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\)

\(\Rightarrow tan\widehat{ASC}=\dfrac{AC}{SA}=\sqrt{2}\Rightarrow\widehat{ASC}\approx54^044'\)

Từ (3) \(\Rightarrow AN\) là hình chiếu vuông góc của AC lên (AMN)

\(\Rightarrow\widehat{CAN}\) là góc giữa AC và (AMN)

Mà \(\widehat{CAN}=\widehat{ASC}\) (cùng phụ \(\widehat{ACS}\)\(\Rightarrow\widehat{CAN}=...\)

c.

\(\left\{{}\begin{matrix}IC=\dfrac{1}{2}AC\left(gt\right)\\AI\cap\left(SBC\right)=C\end{matrix}\right.\) \(\Rightarrow d\left(I;\left(SBC\right)\right)=\dfrac{1}{2}d\left(A;\left(SBC\right)\right)\)

Mà từ (2) ta có \(AM\perp\left(SBC\right)\Rightarrow AM=d\left(A;\left(SBC\right)\right)\)

\(SA=AB\left(gt\right)\Rightarrow\Delta SAB\) vuông cân tại A 

\(\Rightarrow AM=\dfrac{1}{2}SB=\dfrac{a\sqrt{2}}{2}\Rightarrow d\left(I;\left(SBC\right)\right)=\dfrac{1}{2}AM=\dfrac{a\sqrt{2}}{4}\)

Bình luận (0)
NL
8 tháng 5 2023 lúc 0:02

Hình vẽ bài 2:

loading...

Bình luận (0)
NL
8 tháng 5 2023 lúc 0:17

3.

a.

Do \(SA=SB=SC=SD\Rightarrow\) hình chiếu vuông góc của S lên (ABCD) trùng tâm O của hình vuông

Hay \(SO\perp\left(ABCD\right)\)

\(\Rightarrow SO\perp BD\)

Lại có \(AC\perp BD\) (hai đường chéo hình vuông)

\(\Rightarrow BD\perp\left(SAC\right)\Rightarrow BD\perp SC\)

Mà MN là đường trung bình tam giác SBD \(\Rightarrow MN||BD\)

\(\Rightarrow MN\perp SC\Rightarrow\left(\widehat{MN;SC}\right)=90^0\)

b.

\(AC=\sqrt{AB^2+BC^2}=2a\sqrt{2}\)

\(SA=SC=2a\Rightarrow SA^2+SC^2=8a^2=AC^2\)

\(\Rightarrow\Delta SAC\) vuông tại S (pitago đảo)

\(\Rightarrow SA\perp SC\)

c.

\(AB||CD\Rightarrow AB||\left(SCD\right)\Rightarrow d\left(AB;\left(SCD\right)\right)=d\left(A;\left(SCD\right)\right)\)

Lại có \(\left\{{}\begin{matrix}AC=2OC\\AO\cap\left(SCD\right)=C\end{matrix}\right.\) \(\Rightarrow d\left(A;\left(SCD\right)\right)=2d\left(O;\left(SCD\right)\right)\)

Từ O kẻ \(OE\perp CD\), từ \(O\) kẻ \(OF\perp SE\)

\(\Rightarrow OF\perp\left(SCD\right)\Rightarrow OF=d\left(O;\left(SCD\right)\right)\)

\(OE=\dfrac{1}{2}BC=a\) (đường trung bình)

\(\Delta SAC\) vuông tại S (theo cm câu b) \(\Rightarrow SO=\dfrac{1}{2}AC=a\sqrt{2}\) (trung tuyến ứng với cạnh huyền)

Hệ thức lượng:

\(OF=\dfrac{SO.OE}{\sqrt{SO^2+OE^2}}=\dfrac{a\sqrt{6}}{3}\)

\(\Rightarrow d\left(A;\left(SCD\right)\right)=2OF=\dfrac{2a\sqrt{6}}{3}\)

Bình luận (0)
NA
Xem chi tiết