Những câu hỏi liên quan
NH
Xem chi tiết
TL
18 tháng 8 2020 lúc 20:10

Phương trình \(5x+25=-3xy+8y^2\Leftrightarrow x=\frac{8y^2-25}{3y+5}\)

Bời vì x,y là số nguyên \(\Rightarrow8y^2-25⋮3y+5\)

\(\Rightarrow3\left(8y^2-25\right)⋮\left(3y+5\right)\Rightarrow\left(24y^2-75\right)⋮\left(3y+5\right)\left(1\right)\)

Mặt khác ta có \(8y\left(3y+5\right)⋮\left(3y+5\right)\Rightarrow\left(24y^2+40y\right)⋮\left(3y+5\right)\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\left[\left(24y^2+40y\right)-\left(24y^2-75\right)\right]⋮\left(3y+5\right)\)

Do đó \(\left(40y+75\right)⋮\left(3y+5\right)\Rightarrow3\left(40y+75\right)⋮\left(3y+5\right)\)

\(\Rightarrow\left(120y+225\right)⋮\left(3y+5\right)\)mà \(40\left(3y+5\right)⋮\left(3y+5\right)\)

\(\Rightarrow\left(120y+200\right)⋮\left(3y+5\right)\Rightarrow\left(120y+225\right)-\left(120y+200\right)=25⋮\left(3y+5\right)\)

\(\Rightarrow3y+5\inƯ\left(25\right)=\left\{\pm1;\pm5;\pm25\right\}\)

\(\Rightarrow y\in\left\{-2;0;-10\right\}\)

Với y=-2 => x=-7 ta có cặp (-7;-2) thỏa mãn

Với y=0 => x=-5 ta có cặp (-5;0) thỏa mãn

Với y=-10 => x=-3 ta có cặp (-3;-10) thỏa mãn

Phương trình có các cặp nghiệm nguyên \(\left(x;y\right)=\left\{\left(-7;-2\right);\left(-5;0\right);\left(-3;-10\right)\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
TT
20 tháng 8 2020 lúc 7:40
E7euueueru3
Bình luận (0)
 Khách vãng lai đã xóa
CT
22 tháng 8 2020 lúc 9:10

đây ko phải câu hỏi lớp 1

Bình luận (0)
 Khách vãng lai đã xóa
MB
Xem chi tiết
NB
Xem chi tiết
NT
1 tháng 6 2018 lúc 11:55

t

Bình luận (0)
NB
Xem chi tiết
H24
Xem chi tiết
KS
9 tháng 12 2018 lúc 10:27

\(3xy+x+15y-44=0\)

\(3y\left(x+5\right)+\left(x+5\right)-49=0\)

\(\left(x+5\right)\left(3y+1\right)=49\)

Vì x;y là số nguyên \(\Rightarrow\hept{\begin{cases}x+5\in Z\\3y+1\in Z\end{cases}}\)

Có \(\left(x+5\right)\left(3y+1\right)=49\)

\(\Rightarrow\left(x+5\right)\left(3y+1\right)\in\text{Ư}\left(49\right)=\left\{\pm1;\pm7;\pm49\right\}\)

b tự lập bảng nhé~

Bình luận (0)
H24
Xem chi tiết
NQ
17 tháng 3 2021 lúc 7:19

a. ta có 

\(4x^2+\left(x-y\right)^2=17\)

do x nguyên nên \(4x^2\in\left\{0,4,16\right\}\) tương ứng ta tìm được \(\left(x-y\right)^2\in\left\{17,13,1\right\}\)

vậy chỉ có \(\hept{\begin{cases}4x^2=16\\\left(x-y\right)^2=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\\orbr{\begin{cases}y=3\\y=1\end{cases}}\end{cases}}}\text{ hoặc }\hept{\begin{cases}x=-2\\\orbr{\begin{cases}y=-1\\y=-3\end{cases}}\end{cases}}\)\(\hept{\begin{cases}4x^2=16\\\left(x-y\right)^2=1\end{cases}\Rightarrow\left(x,y\right)\in\left\{\left(2,1\right);\left(2,3\right);\left(-2;-1\right);\left(-2;-3\right)\right\}}\)

b. ta có \(9xy+3x+3y=12\Leftrightarrow\left(3x+1\right)\left(3y+1\right)=13\)

từ đó \(\Rightarrow\hept{\begin{cases}3x+1=\pm1\\3y+1=\pm13\end{cases}}\) hoặc \(\Rightarrow\hept{\begin{cases}3x+1=\pm13\\3y+1=\pm1\end{cases}}\) vậy ta tìm được \(\left(x,y\right)\in\left\{\left(0,4\right),\left(4,0\right)\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
PK
Xem chi tiết
DH
5 tháng 1 2018 lúc 18:51

\(x^2=\frac{20142-8y^2}{5}\)(1)
Do x nguyên nên 20142-8y2 chia hết cho 5=> 8y2 có tận cùng là 2
y={+-2;+-3;+-7;+-8;+-12;+-13;+-17;+-18;+-22;+-23;+-27;+-28;+-32;+-33;+-37;+-38;+-42;+-43;+-47;+-48}
Thay tất cả giá trị của y vào (1) => k có giá trị nào của y thỏa mãn x nguyên 
Vậy pt trên vô nghiệm

Bình luận (0)
LT
Xem chi tiết
HP
Xem chi tiết