Những câu hỏi liên quan
AF
Xem chi tiết
PB
Xem chi tiết
CT
23 tháng 4 2018 lúc 8:19

Giải sách bài tập Toán 7 | Giải sbt Toán 7

Bình luận (0)
ND
Xem chi tiết
H24
25 tháng 8 2023 lúc 7:21

Có: \(a+b+c=1\Leftrightarrow\left(a+b+c\right)^2=1\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}\)

\(\Rightarrow\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}=\dfrac{\left(x+y+z\right)^2}{\left(a+b+c\right)^2}=\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\)

\(\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\) (do \(\left(a+b+c\right)^2=a^2+b^2+c^2=1\))

Bình luận (0)
PB
Xem chi tiết
CT
16 tháng 2 2018 lúc 16:05

Chọn đáp án D

Bình luận (0)
NA
Xem chi tiết
NH
17 tháng 3 2023 lúc 11:54

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) ⇒ \(\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}\) 

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x^2}{a^2}\)  = \(\dfrac{y^2}{b^2}\) = \(\dfrac{z^2}{c^2}\) = \(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\) = \(\dfrac{x^2+y^2+z^2}{1}\) = \(x^2+y^2+z^2\) (1)

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}\) = \(\dfrac{x+y+z}{1}\) = \(x+y+z\)

\(\dfrac{x}{a}\) = \(x+y+z\) ⇒ \(\dfrac{x^2}{a^2}\) = (\(x+y+z\)) (2) 

Từ (1) và (2) ta có :

\(\dfrac{x^2}{a^2}\) = \(x^2\) + y2 + z2 = ( \(x+y+z\))2 (đpcm)

Bình luận (0)
HN
17 tháng 3 2023 lúc 13:39

 ⇒ �2�2=�2�2=�2�2 

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

�2�2  = �2�2 = �2�2 = �2+�2+�2�2+�2+�2 = �2+�2+�21 = �2+�2+�2

Bình luận (0)
TL
Xem chi tiết
6H
Xem chi tiết
H9
12 tháng 3 2023 lúc 13:40

Áp dụng tính chất các dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}=\dfrac{x+y+z}{1}\)

\(x=a\left(x+y+z\right)=x^2=a^2.\left(x+y+z\right)^2\)

\(y=b\left(x+y+z\right)=y^2=b^2\left(x+y+z\right)^2\)

\(z=c\left(x+y+z\right)=z^2=c^2.\left(x+y+z\right)^2\)

\(\Rightarrow x^2+y^2+z^2=a^2\left(x+y+z\right)^2+b^2\left(x+y+z\right)^2+c^2\left(x+y+z\right)^2\)

                         \(=\left(x+y+z\right)^2\left(a^2+b^2+c^2\right)=\left(x+y+z\right)^2\) (do \(a^2+b^2+c^2=1\))

 

Bình luận (1)
DK
14 tháng 3 2023 lúc 11:50

lol

Bình luận (0)
KM
Xem chi tiết
TT
Xem chi tiết
VL
Xem chi tiết
HM
2 tháng 9 2015 lúc 11:04

Kb: Có lẽ tôi viết đến đây cũng đã nói hết cảm xúc trong lòng mình. Mọi chuyện rồi cũng sẽ ổn thôi. Đối với đây là 1 cuộc chia tay vô cùng ý nghĩa-Cuộc chia tay của những con búp bê

Bình luận (0)
VQ
15 tháng 10 2016 lúc 20:06

Ta có BĐT Bu-nhi-a-cốp-xki sau đây : 
(a^2 + b^2 + c^2)(x^2 + y^2 + z^2) >= (ax + by + cz)^2 
(Bạn tự cm BĐT này) 
Từ đó suy ra : (a + b + c)^2 = (a.căn x / căn x + b.căn y/ căn y + c.căn z/căn z)^2 
<= [(a/căn x)^2 + (b/căn y)^2 + (c/căn z)^2][(căn x)^2 + (căn y)^2 + (căn z)^2] = (a^2/x + b^2/y + c^2/z)(x+y+z) 
=> a^2/x + b^2/y + c^2/z >= (a+b+c)^2/(x+y+z)

Bình luận (0)