Cho a,b,c >0 Chứng minh \(\frac{b.c}{a}+\frac{a.c}{b}+\frac{a.b}{c}\ge a+b+c\)( Không dùng Cô si )
Cho a,b,c >0 chứng minh \(\frac{b.c}{a}+\frac{c.a}{b}+\frac{a.b}{c}\ge a+b+c\)
Với a,b,c>0 .
áp dụng bđt cosi,ta có:
b.c/a+c.a/b>_2c (1)
c.a/b+a.b/c>_2a (2)
a.b/c+b.c/a>_2b ((3)
Cộng (1),,(2),,(3) vế theo vế ,ta được:
2.(b.c/a+c.a/b+a.b/c)>_ 2.(a+b+c)
=>b.c/a+c.a/b+a.b/c>_ a+b+c (đpcm)
Cho ba số dương 0 < hoặc = a < hoặc = b< hoặc = c < hoặc = 1.Chứng minh rằng: \(\frac{a}{b.c+1}\)+\(\frac{b}{a.c+1}\)+\(\frac{c}{a.b+1}\)< hoặc = 2
Giải:
Từ giả thiết ta có:
\(\left(1-b\right)\left(1-c\right)\ge0\)
\(\Leftrightarrow1-\left(b+c\right)+bc\ge0\)
\(\Leftrightarrow bc+1\ge b+c\)
\(\Rightarrow\frac{a}{bc+1}\le\frac{a}{b+c}\le\frac{a}{a+b}\left(1\right)\)
Tương tự ta có:
\(\frac{b}{ac+1}\le\frac{b}{a+c}\le\frac{b}{a+b}\left(2\right)\)
\(\frac{c}{ab+1}\le c\le1\left(3\right)\)
Cộng theo vế \(\left(1\right);\left(2\right);\left(3\right)\) ta được:
\(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le\frac{a+b}{a+b}+1=2\)
Vậy \(\frac{a}{bc+1}+\frac{b}{ac+1}+\frac{c}{ab+1}\le2\) (Đpcm)
Không dùng bđt Cô-si cho 3 số ko âm
Cho a,b,c>0 Chứng minh
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}>=\frac{9}{a+b+c}\)
Câu hỏi của Called love - Toán lớp 8 - Học toán với OnlineMath
Ban jtrar My làm òi nhé !
Bạn tham khảo tại đây :
Câu hỏi của Nguyễn Anh Quân - Toán lớp 8 - Học toán với OnlineMath
~ Ủng hộ nhé
P/s nhớ là đã làm 1 lần rùi :)
\(a+b+c\ge3\sqrt[3]{3}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3^3\sqrt{\frac{1}{abc}}\)
Nhân 2 vế lại với nhau ta được: \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)
Vậy \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(đpcm\right)\)
Giúp em với mọi người ơi...Bài này em không làm bằng phương pháp S*O*S hoặc dùng Cô si (AM-GM) như bình thường được rồi.
Cho a, b, c > 0 thỏa mãn a + b +c = 3. Chứng minh rằng:
\(A=\frac{a^2}{a+b^2}+\frac{b^2}{b+c^2}+\frac{c^2}{c+a^2}\ge\frac{3}{2}\)
Ta có
\(\frac{a^2}{a+b^2}=\frac{a^2+ab^2-ab^2}{a+b^2}=a-\frac{ab^2}{a+b^2}\ge a-\frac{b\sqrt{a}}{2}\ge a-\frac{1}{4}b\left(a+1\right)\)
Khi đó
\(A\ge\frac{3}{4}\left(a+b+c\right)-\frac{1}{4}\left(ab+bc+ac\right)\)
Mà \(ab+bc+ac\le\frac{1}{3}\left(a+b+c\right)^2=3\)
=> \(A\ge\frac{9}{4}-\frac{3}{4}=\frac{3}{2}\)( ĐPCM)
Dấu bằng xảy ra khi a=b=c=1
\(a-\frac{ab^2}{a+b^2}\ge a-\frac{b\sqrt{a}}{2}\)
Do \(a+b^2\ge2b\sqrt{a}\)
\(a-\frac{ab^2}{a+b^2}\ge a-\frac{b\sqrt{a}}{2}\ge a-\frac{1}{4}b\left(a+1\right)\)
Do \(\sqrt{a}\le\frac{a+1}{2}\)
Cho a,b, c khác 0 , thỏa mãn : \(\frac{a.b}{a+b}=\frac{b.c}{b+c}=\frac{a.c}{a+c}\)
Tính \(P=\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}\)
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}\\\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{a}=\frac{1}{c}\\\frac{1}{b}=\frac{1}{a}\end{cases}}\)
\(\Leftrightarrow a=b=c\)
Vậy P =1
Chứng minh bất đẳng thức :
a) \(3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
b) \(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)với mọi a, b, c > 0
(Không dùng bất đẳng thức Cô-si)
Cho a,b,c>0 thỏa mãn a.b.c=1
CMR:\(\frac{1}{a.b+a+2}+\frac{1}{b.c+b+2}+\frac{1}{a.c+c+2}\le\frac{3}{4}\)
Cho a,b,c \(\in\) R và a.b.c=1
Chứng tỏ: \(\frac{1}{a+a+a.b}+\frac{1}{1+b+b.c}+\frac{1}{1+c+a.c}=1\)
Ta có:
\(\frac{1}{1+a+a.b}+\frac{1}{1+b+b.c}+\frac{1}{1+c+a.c}\)
\(=\frac{1}{1+a+a.b}+\frac{a}{a+a.b+a.b.c}+\frac{a.b}{a.b+a.b.c+a.c.a.b}\)
\(=\frac{1}{1+a+a.b}+\frac{a}{a+a.b+a}+\frac{a.b}{a.b+1+a}\)
\(=\frac{1+a+a.b}{1+a+a.b}=1\)
Dạng 1: Bất đẳng thức cô-si
Bài 1 : Cho a,b.c>0 Chứng minh rằng \(a^3+b^3+c^3\ge a^2b+b^2c+ca^2\)
từ đó Chứng minh dạng tổng quát là : \(a^x+b^x+c^x\ge a^m.b^n+b^m.c^n+c^m.a^n\) ( m,n,x là các số nguyên dương và m+n=x)
Bài 2: Cho a,b.c>0
a)Chứng minh rằng \(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\ge a+b+c\)
b) Chứng minh rằng \(\frac{a^4}{a^2b}+\frac{b^4}{b^2c}+\frac{c^4}{c^2a}\ge a+b+c\) ( cả 2 câu này cach làm như nhau nhé !)
Bài 3 :Cho a,b,c> 0 Thỏa mãn abc=1. Chứng minh rằng \(\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{c^3+a^3+1}\le1\)
Áp dụng 1 trong 2 bài trên )
Bài 4:Cho x,y >0 thỏa mãn \(x+y\le2\)
Tìm min của \(A=\frac{1}{x^2}+\frac{1}{y^2}+2x+2y\)
^_^
Mấy câu này các bạn k cần full cũng được!
bài 1 a, hình như có thêm đk là a+b+c=3
Bài 4 nha
Áp dụng BĐT cô si ta có
\(\frac{1}{x^2}+x+x\ge3\sqrt[3]{\frac{1}{x^2}.x.x}=3.\)
Tương tự với y . \(A\ge6\)dấu = xảy ra khi x=y=1
câu 1 mk bị lộn nhưng đáng ra ca^2 thành c^2a mới đúng