Những câu hỏi liên quan
CL
Xem chi tiết
TQ
23 tháng 8 2015 lúc 21:04

a) |x+2|+|3-x|>=|x+2+3-x|=|5|=5

dau "=" xay ra khi va chi khi (x+2)(3-x)>=0

=>x>=-2 hoặc x<=3

vạy GTNN cua bieu thuc la 5 khi va chi khi ...

b)cau b tuong tu

c) vi |x+1|>=0

|y+2|>=0

=>|x+1|+|y+2|>=0 dau "=" xay ra khi va chi khi x+1=0 va y+2=0

=>x=-1 va y=-2

vay GTNN cua bieu thuc la 0 khi va chi khi x=-1 va y=-2

Bình luận (0)
H24
Xem chi tiết
NT
27 tháng 5 2023 lúc 7:47

a: \(B=\dfrac{2x+3\sqrt{x}+9-x+3\sqrt{x}}{x-9}=\dfrac{x+9}{x-9}\)

b: \P=A:B

\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}-3}\cdot\dfrac{x-9}{x+9}=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{x+9}>=\dfrac{-1\cdot3}{9}=\dfrac{-1}{3}\)

Dấu = xảy ra khi x=0

Bình luận (0)
VN
Xem chi tiết
HH
1 tháng 5 2018 lúc 21:41

Ta có \(\left|x-3\right|\ge0\)với mọi giá trị của x

\(\left|x\right|\ge0\)với mọi giá trị của x

\(\left|x+1\right|\ge0\)với mọi giá trị của x

=> \(\left|x-3\right|+\left|x\right|+\left|x+1\right|\ge0\)với mọi giá trị của x

=> \(\left|x-3\right|+\left|x\right|+\left|x+1\right|+9\ge9\)với mọi giá trị của x

Vậy GTNN của A là 9.

Bình luận (0)
ND
Xem chi tiết
TM
5 tháng 11 2017 lúc 15:17

GTNN là gì z.tui ko  hiểu nên ko giải được!

Bình luận (0)
GN

GTNN là giá trị nhỏ nhất

Bình luận (0)
NJ
6 tháng 4 2018 lúc 19:38

giá trị nhỏ nhất

Bình luận (0)
DN
Xem chi tiết
LD
21 tháng 4 2021 lúc 16:22

1. B = | x - 2018 | + | x - 2019 | + | x - 2020 |

= ( | x - 2018 | + | x - 2020 | ) + | x - 2019 | 

= ( | x - 2018 | + | 2020 - x | ) + | x - 2019 |

Vì \(\hept{\begin{cases}\left|x-2018\right|+\left|2020-x\right|\ge\left|x-2018+2020-x\right|=2\\\left|x-2019\right|\ge0\end{cases}}\)=> B ≥ 2 ∀ x

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2018\right)\left(2020-x\right)\ge0\\x-2019=0\end{cases}}\Rightarrow x=2019\)

Vậy MinB = 2 <=> x = 2019

Bình luận (0)
 Khách vãng lai đã xóa
LD
21 tháng 4 2021 lúc 16:24

2. ĐKXĐ : x ≥ 0

Ta có : \(\sqrt{x}+3\ge3\forall x\ge0\)

=> \(\frac{2019}{\sqrt{x}+3}\le673\forall x\ge0\). Dấu "=" xảy ra <=> x = 0 (tm)

Vậy MaxC = 673 <=> x = 0

Bình luận (0)
 Khách vãng lai đã xóa
NT
21 tháng 4 2021 lúc 16:27

Bài 1 : 

\(B=\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\)

Ta có : \(\left|x-2018\right|\ge0\forall x;\left|x-2019\right|\ge0\forall x;\left|x-2020\right|\ge0\forall x\)

\(\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\ge0\)

Dấu ''='' xảy ra khi \(x=2018;x=2019;x=2020\)

Vậy GTNN B là 0 khi x = 2018 ; x = 2019 ; x = 2020 

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
Xem chi tiết
NT
29 tháng 5 2023 lúc 9:48

a: M=A:B

\(=\dfrac{x+\sqrt{x}+10-\sqrt{x}-3}{x-9}\cdot\dfrac{\sqrt{x}-3}{1}=\dfrac{x+7}{\sqrt{x}+3}\)

b: \(M=\dfrac{x-9+16}{\sqrt{x}+3}=\sqrt{x}-3+\dfrac{16}{\sqrt{x}+3}\)

=>\(M=\sqrt{x}+3+\dfrac{16}{\sqrt{x}+3}-6>=2\sqrt{16}-6=2\)

Dấu = xảy ra khi (căn x+3)^2=16

=>căn x+3=4

=>x=1

Bình luận (0)
MH
Xem chi tiết
H24
28 tháng 8 2023 lúc 19:55

Để tìm giá trị nhỏ nhất của biểu thức |x+3| + |x+7| + |x+9| + |x+15|, ta có thể sử dụng một số phương pháp. Một trong những phương pháp đơn giản là sử dụng định nghĩa của giá trị tuyệt đối.

Định nghĩa của giá trị tuyệt đối là:

Nếu x >= 0, |x| = x.Nếu x < 0, |x| = -x.

Với biểu thức |x+3| + |x+7| + |x+9| + |x+15|, ta có thể chia thành các trường hợp dựa trên giá trị của x.

Khi x ≤ -15:

Khi x ≤ -15, cả bốn giá trị trong biểu thức đều là số âm.Vì vậy, ta có |x+3| + |x+7| + |x+9| + |x+15| = -(x+3) - (x+7) - (x+9) - (x+15) = -4x - 34.

Khi -15 < x ≤ -9:

Khi -15 < x ≤ -9, ba giá trị đầu tiên trong biểu thức là số âm, còn giá trị cuối cùng là số dương.Vì vậy, ta có |x+3| + |x+7| + |x+9| + |x+15| = -(x+3) - (x+7) - (x+9) + (x+15) = -2x - 4.

Khi -9 < x ≤ -7:

Khi -9 < x ≤ -7, hai giá trị đầu tiên trong biểu thức là số âm, còn hai giá trị cuối cùng là số dương.Vì vậy, ta có |x+3| + |x+7| + |x+9| + |x+15| = -(x+3) - (x+7) + (x+9) + (x+15) = 4.

Khi -7 < x ≤ -3:

Khi -7 < x ≤ -3, giá trị đầu tiên trong biểu thức là số âm, còn ba giá trị còn lại là số dương.Vì vậy, ta có |x+3| + |x+7| + |x+9| + |x+15| = -(x+3) + (x+7) + (x+9) + (x+15) = 4x + 28.

Khi -3 < x ≤ -1:

Khi -3 < x ≤ -1, giá trị đầu tiên và giá trị thứ ba trong biểu thức là số âm, còn hai giá trị còn lại là số dương.Vì vậy, ta có |x+3| + |x+7| + |x+9| + |x+15| = -(x+3) + (x+7) - (x+9) + (x+15) = 28.

Khi -1 < x ≤ -0.75:

Khi -1 < x ≤ -0.75, giá trị đầu tiên, giá trị thứ ba và giá trị thứ tư trong biểu thức là số âm, còn giá trị thứ hai là số dương.Vì vậy, ta có |x+3| + |x+7| + |x+9| + |x+15| = -(x+3) + (x+7) - (x+9) - (x+15) = -4.

Khi -0.75 < x ≤ -0.5:

Khi -0.75 < x ≤ -0.5, giá trị đầu tiên, giá trị thứ hai và giá trị thứ tư trong biểu thức là số âm, còn giá trị thứ ba là số dương.Vì vậy, ta có |x+3| + |x+7| + |x+9| + |x+15| = -(x+3) + (x+7) - (x+9) + (x+15) = 10.

Khi -0.5 < x ≤ -0.25:

Khi -0.5 < x ≤ -0.25, giá trị đầu tiên, giá trị thứ hai và giá trị thứ ba trong biểu thức là số âm, còn giá trị thứ tư là số dương.Vì vậy, ta có |x+3| + |x+7| + |x+9| + |x+15| = -(x+3) + (x+7) - (x+9) + (x+15) = 10.

Khi -0.25 < x ≤ 0:

Khi -0.25 < x ≤ 0, giá trị đầu tiên, giá trị thứ hai và giá trị thứ tư trong biểu thức là số âm, còn giá trị thứ ba là số dương.Vì vậy, ta có |x+3| + |x+7| + |x+9| + |x+15| = -(x+3) + (x+7) - (x+9) + (x+15) = 10.

Từ các trường hợp trên, ta có thể thấy rằng giá trị nhỏ nhất của biểu thức |x+3| + |x+7| + |x+9| + |x+15| là -4.

Vì vậy, giá trị nhỏ nhất của biểu thức là -4.

Bình luận (0)
HN
Xem chi tiết