tìm GTNN của biểu thức sau x + 9/x-1 +3
Tìm GTNN của các biểu thức sau:
a. |x + 2| + |3 - x|
b. |9 - x| + |x + 1|
c. |x + 1/ + |y +2|
a) |x+2|+|3-x|>=|x+2+3-x|=|5|=5
dau "=" xay ra khi va chi khi (x+2)(3-x)>=0
=>x>=-2 hoặc x<=3
vạy GTNN cua bieu thuc la 5 khi va chi khi ...
b)cau b tuong tu
c) vi |x+1|>=0
|y+2|>=0
=>|x+1|+|y+2|>=0 dau "=" xay ra khi va chi khi x+1=0 va y+2=0
=>x=-1 va y=-2
vay GTNN cua bieu thuc la 0 khi va chi khi x=-1 va y=-2
Cho các biểu thức sau (giải chi tiết)
A = \(\dfrac{2\sqrt{x}-1}{\sqrt{x}-3}\) và B = \(\dfrac{2x+3\sqrt{x}+9}{x-9}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\) với \(x\ge0;x\ne9\)
a) Rút gọn biểu thức B
b) Cho \(P=\dfrac{A}{B}\). Tìm GTNN của P
a: \(B=\dfrac{2x+3\sqrt{x}+9-x+3\sqrt{x}}{x-9}=\dfrac{x+9}{x-9}\)
b: \P=A:B
\(=\dfrac{2\sqrt{x}-1}{\sqrt{x}-3}\cdot\dfrac{x-9}{x+9}=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}{x+9}>=\dfrac{-1\cdot3}{9}=\dfrac{-1}{3}\)
Dấu = xảy ra khi x=0
Tìm GTNN của biểu thức A = 9 + |x - 3| + |x| + |x + 1|
Ta có \(\left|x-3\right|\ge0\)với mọi giá trị của x
\(\left|x\right|\ge0\)với mọi giá trị của x
\(\left|x+1\right|\ge0\)với mọi giá trị của x
=> \(\left|x-3\right|+\left|x\right|+\left|x+1\right|\ge0\)với mọi giá trị của x
=> \(\left|x-3\right|+\left|x\right|+\left|x+1\right|+9\ge9\)với mọi giá trị của x
Vậy GTNN của A là 9.
Cho x,y thuộc Z :
a/ Với giá trị nào của x thì biểu thức của A=2006-|x+5|có GTLN?Tìm GTLN đó?
b/Với giá trị nào của y thì biểu thức của B=|y-3|-9 có GTNN ?Tìm GTNN đó?
c/Tìm GTNN của biểu thức C=|x-100|+|y+200|-1?
GTNN là gì z.tui ko hiểu nên ko giải được!
GTNN là giá trị nhỏ nhất
bài 1: tìm GTNN của biểu thức sau: B= |x-2018| + |x-2019| + |x-2020|
bài 2: tìm GTNN của biểu thức sau: C= \(\frac{2019}{\sqrt{x}+3}\)
Hộ mình nhaaa :3 camon trước :3
1. B = | x - 2018 | + | x - 2019 | + | x - 2020 |
= ( | x - 2018 | + | x - 2020 | ) + | x - 2019 |
= ( | x - 2018 | + | 2020 - x | ) + | x - 2019 |
Vì \(\hept{\begin{cases}\left|x-2018\right|+\left|2020-x\right|\ge\left|x-2018+2020-x\right|=2\\\left|x-2019\right|\ge0\end{cases}}\)=> B ≥ 2 ∀ x
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-2018\right)\left(2020-x\right)\ge0\\x-2019=0\end{cases}}\Rightarrow x=2019\)
Vậy MinB = 2 <=> x = 2019
2. ĐKXĐ : x ≥ 0
Ta có : \(\sqrt{x}+3\ge3\forall x\ge0\)
=> \(\frac{2019}{\sqrt{x}+3}\le673\forall x\ge0\). Dấu "=" xảy ra <=> x = 0 (tm)
Vậy MaxC = 673 <=> x = 0
Bài 1 :
\(B=\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\)
Ta có : \(\left|x-2018\right|\ge0\forall x;\left|x-2019\right|\ge0\forall x;\left|x-2020\right|\ge0\forall x\)
\(\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\ge0\)
Dấu ''='' xảy ra khi \(x=2018;x=2019;x=2020\)
Vậy GTNN B là 0 khi x = 2018 ; x = 2019 ; x = 2020
Tìm GTLN, GTNN của các biểu thức sau và tìm điều kiện của x để biểu thức có GTLN, GTNN:
C=/x+1/+/x+2/+/x+3/+/x+4/+/x+5/
D=/x-1/+/x-2/+/x-3/+....+ /x-2017/
Giúp mk nha !
Cho các biểu thức sau:
A = \(\dfrac{x+\sqrt{x}+10}{x-9}-\dfrac{1}{\sqrt{x}-3}\) và B = \(\dfrac{1}{\sqrt{x}-3}\) với \(x\ge0;x\ne9\)
a) Rút gọn biểu thức \(M=\dfrac{A}{B}\)
b) Tìm GTNN của biểu thức M
a: M=A:B
\(=\dfrac{x+\sqrt{x}+10-\sqrt{x}-3}{x-9}\cdot\dfrac{\sqrt{x}-3}{1}=\dfrac{x+7}{\sqrt{x}+3}\)
b: \(M=\dfrac{x-9+16}{\sqrt{x}+3}=\sqrt{x}-3+\dfrac{16}{\sqrt{x}+3}\)
=>\(M=\sqrt{x}+3+\dfrac{16}{\sqrt{x}+3}-6>=2\sqrt{16}-6=2\)
Dấu = xảy ra khi (căn x+3)^2=16
=>căn x+3=4
=>x=1
tìm gtnn của biểu thức| x+3 |+| x+7| +| x+9| +| x+15|
Để tìm giá trị nhỏ nhất của biểu thức |x+3| + |x+7| + |x+9| + |x+15|, ta có thể sử dụng một số phương pháp. Một trong những phương pháp đơn giản là sử dụng định nghĩa của giá trị tuyệt đối.
Định nghĩa của giá trị tuyệt đối là:
Nếu x >= 0, |x| = x.Nếu x < 0, |x| = -x.Với biểu thức |x+3| + |x+7| + |x+9| + |x+15|, ta có thể chia thành các trường hợp dựa trên giá trị của x.
Khi x ≤ -15:
Khi x ≤ -15, cả bốn giá trị trong biểu thức đều là số âm.Vì vậy, ta có |x+3| + |x+7| + |x+9| + |x+15| = -(x+3) - (x+7) - (x+9) - (x+15) = -4x - 34.Khi -15 < x ≤ -9:
Khi -15 < x ≤ -9, ba giá trị đầu tiên trong biểu thức là số âm, còn giá trị cuối cùng là số dương.Vì vậy, ta có |x+3| + |x+7| + |x+9| + |x+15| = -(x+3) - (x+7) - (x+9) + (x+15) = -2x - 4.Khi -9 < x ≤ -7:
Khi -9 < x ≤ -7, hai giá trị đầu tiên trong biểu thức là số âm, còn hai giá trị cuối cùng là số dương.Vì vậy, ta có |x+3| + |x+7| + |x+9| + |x+15| = -(x+3) - (x+7) + (x+9) + (x+15) = 4.Khi -7 < x ≤ -3:
Khi -7 < x ≤ -3, giá trị đầu tiên trong biểu thức là số âm, còn ba giá trị còn lại là số dương.Vì vậy, ta có |x+3| + |x+7| + |x+9| + |x+15| = -(x+3) + (x+7) + (x+9) + (x+15) = 4x + 28.Khi -3 < x ≤ -1:
Khi -3 < x ≤ -1, giá trị đầu tiên và giá trị thứ ba trong biểu thức là số âm, còn hai giá trị còn lại là số dương.Vì vậy, ta có |x+3| + |x+7| + |x+9| + |x+15| = -(x+3) + (x+7) - (x+9) + (x+15) = 28.Khi -1 < x ≤ -0.75:
Khi -1 < x ≤ -0.75, giá trị đầu tiên, giá trị thứ ba và giá trị thứ tư trong biểu thức là số âm, còn giá trị thứ hai là số dương.Vì vậy, ta có |x+3| + |x+7| + |x+9| + |x+15| = -(x+3) + (x+7) - (x+9) - (x+15) = -4.Khi -0.75 < x ≤ -0.5:
Khi -0.75 < x ≤ -0.5, giá trị đầu tiên, giá trị thứ hai và giá trị thứ tư trong biểu thức là số âm, còn giá trị thứ ba là số dương.Vì vậy, ta có |x+3| + |x+7| + |x+9| + |x+15| = -(x+3) + (x+7) - (x+9) + (x+15) = 10.Khi -0.5 < x ≤ -0.25:
Khi -0.5 < x ≤ -0.25, giá trị đầu tiên, giá trị thứ hai và giá trị thứ ba trong biểu thức là số âm, còn giá trị thứ tư là số dương.Vì vậy, ta có |x+3| + |x+7| + |x+9| + |x+15| = -(x+3) + (x+7) - (x+9) + (x+15) = 10.Khi -0.25 < x ≤ 0:
Khi -0.25 < x ≤ 0, giá trị đầu tiên, giá trị thứ hai và giá trị thứ tư trong biểu thức là số âm, còn giá trị thứ ba là số dương.Vì vậy, ta có |x+3| + |x+7| + |x+9| + |x+15| = -(x+3) + (x+7) - (x+9) + (x+15) = 10.Từ các trường hợp trên, ta có thể thấy rằng giá trị nhỏ nhất của biểu thức |x+3| + |x+7| + |x+9| + |x+15| là -4.
Vì vậy, giá trị nhỏ nhất của biểu thức là -4.
Tìm GTNN của biểu thức sau : (x-2)(x-3)(x-6)(x+1)-36