Những câu hỏi liên quan
AM
Xem chi tiết
NT
5 tháng 2 2022 lúc 1:10

Bài 1: 

a: \(2A=2^{101}+2^{100}+...+2^2+2\)

\(\Leftrightarrow A=2^{100}-1\)

b: \(3B=3^{101}+3^{100}+...+3^2+3\)

\(\Leftrightarrow2B=3^{100}-1\)

hay \(B=\dfrac{3^{100}-1}{2}\)

c: \(4C=4^{101}+4^{100}+...+4^2+4\)

\(\Leftrightarrow3C=4^{101}-1\)

hay \(C=\dfrac{4^{101}-1}{3}\)

 

Bình luận (0)
TN
Xem chi tiết
TD
1 tháng 5 2017 lúc 12:58

tính riêng:

\(\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}\)

=\(\left(\frac{100}{99}-1\right)+\left(\frac{100}{98}-1\right)+\left(\frac{100}{97}-1\right)+...+\left(\frac{100}{2}-1\right)+99\)

=\(100.\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+...+\frac{1}{2}\right)+99-98\) 

=\(100.\left(\frac{1}{100}+\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+...+\frac{1}{2}\right)\)

vậy \(\left(\frac{1}{99}+\frac{2}{98}+\frac{3}{97}+...+\frac{99}{1}\right):\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)=100\)

chúc bạn học tốt ^^

Bình luận (0)
H24
Xem chi tiết
LH
11 tháng 6 2021 lúc 19:59

Với n\(\in N\)* có: \(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)\(=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}\left(n+1-n\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\)\(=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

\(\Rightarrow\)\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\) (*)

a) Áp dụng (*) vào T

\(\Rightarrow T=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}-\dfrac{1}{\sqrt{100}}\)\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)

b) Có \(VT=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)\(=1-\dfrac{1}{\sqrt{n+1}}=\dfrac{4}{5}\)

\(\Leftrightarrow\sqrt{n+1}=5\Leftrightarrow n=24\) (tm)

Vậy n=24.

Bình luận (0)
NL
Xem chi tiết
TC
Xem chi tiết
NH

       A =          1 +   \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\) +.......+\(\dfrac{1}{3^{n-1}}\) + \(\dfrac{1}{3^n}\)  

3\(\times\) A  =  3  +  \(\dfrac{1}{3}\) +  \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\)+........+ \(\dfrac{1}{3^{n-1}}\)

3A - A =  3 + \(\dfrac{1}{3}\) - 1 - \(\dfrac{1}{3^n}\) 

    2A  = \(\dfrac{7}{3}\) - \(\dfrac{1}{3^n}\)

      A  = ( \(\dfrac{7}{3}\) - \(\dfrac{1}{3^n}\)): 2

     A =   \(\dfrac{7.3^{n-1}-1}{3^n}\) : 2

     A = \(\dfrac{7.3^{n-1}-1}{2.3^n}\)

 

 

Bình luận (0)
NH

   B   =      \(\dfrac{1}{2}\) - \(\dfrac{1}{2^2}\) + \(\dfrac{1}{2^3}\) - \(\dfrac{1}{2^4}\)+......+\(\dfrac{1}{2^{99}}\) - \(\dfrac{1}{2^{100}}\)

2B    =  2 - \(\dfrac{1}{2}\) + \(\dfrac{1}{2^2}\) -  \(\dfrac{1}{2^3}\)\(\dfrac{1}{2^4}\)-.......-\(\dfrac{1}{2^{99}}\)

2B + B = 2 - \(\dfrac{1}{2^{100}}\)

  3B     =  2 - \(\dfrac{1}{2^{100}}\)

    B     =   ( 2 - \(\dfrac{1}{2^{100}}\)): 3

    B     =     \(\dfrac{2.2^{100}-1}{2^{100}}\) : 3

    B     = \(\dfrac{2^{101}-1}{3.2^{100}}\)

Bình luận (0)
PH
Xem chi tiết
HP
23 tháng 1 2016 lúc 17:36

đề ý 63.1,2-21.3,6+1=0=>B=0
 

Bình luận (0)
MN
Xem chi tiết
TH
14 tháng 5 2022 lúc 21:35

-Quy luật: Nhân mỗi vế của đẳng thức cho số thích hợp để tạo ra đẳng thức mới, khi cộng (hoặc trừ) mỗi vế của mỗi đẳng thức thì sẽ rút gọn bớt.

a) \(A=2-2^2+2^3-2^4+...+2^{99}-2^{100}\)

\(\Rightarrow2A=2^2-2^3+2^4-2^5+...+2^{100}-2^{101}\)

\(\Rightarrow2A+A=2^2-2^3+2^4-2^5+...+2^{100}-2^{101}+\left(2-2^2+2^3-2^4+...+2^{99}-2^{100}\right)\)

\(\Rightarrow A=-2^{101}+2\)

b,c) làm tương tự. 

d) \(D=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\)

\(\Rightarrow3D=3+1+\dfrac{1}{3}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow3D-D=3+1+\dfrac{1}{3}+...+\dfrac{1}{3^{99}}-\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow2D=3+\dfrac{1}{3^{100}}\)

\(\Rightarrow2D=\dfrac{3^{101}+1}{3^{100}}\Rightarrow D=\dfrac{3^{101}+1}{2.3^{100}}\)

e) làm tương tự nhưng đổi thành cộng.

Bình luận (0)
OA
Xem chi tiết
OP
Xem chi tiết
AN
6 tháng 1 2017 lúc 11:51

Ta có

\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n^2+n}\)(nhân lượng liên hiệp nhé)

\(=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}.\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Áp dụng vào bài toán ta có

\(\frac{1}{2\sqrt{1}+1.\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{100\sqrt{99}+99\sqrt{100}}\)

\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\)

\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{100}}=1-\frac{1}{10}=\frac{9}{10}\)

Bình luận (0)