Những câu hỏi liên quan
PA
Xem chi tiết
NH
25 tháng 11 2023 lúc 21:04

Goị ước chung của 6n + 5 và 16n + 13 là d

Ta có: \(\left\{{}\begin{matrix}6n+5⋮d\\16n+13⋮d\end{matrix}\right.\)

        ⇒   \(\left\{{}\begin{matrix}8.\left(6n+5\right)⋮d\\\left(16n+13\right).3⋮d\end{matrix}\right.\)

           \(\left\{{}\begin{matrix}48n+40⋮d\\48n+39⋮d\end{matrix}\right.\)

             48n + 40 - (48n + 39n) ⋮ d

             48n + 40  - 48n - 39 ⋮ d

             (48n - 48n) + (40  - 39) ⋮ d

                                         1 ⋮ d

                                           d  =1

Ước chung lớn nhất của 6n + 5 và 16n + 13 là 1

Vậy 6n + 5 và 16n + 13 là hai số nguyện tố cùng nhau (đpcm)

        

 

Bình luận (0)
NY
Xem chi tiết
DV
26 tháng 6 2015 lúc 9:47

Đặt ƯCLN\(\left(16n+5;24n+7\right)=d\)

=> 16n + 5 chia hết cho d và 24n + 7 chia hết cho d.

=> 3.(16n + 5) - 2.(24n + 7) chia hết cho d.

=> 48n + 15 - 38n + 14 chia hết cho d

=> 1 chia hết cho d

=> d = 1

  suy ra điều phải chứng tỏ
 

Bình luận (0)
VH
29 tháng 3 2017 lúc 21:07

Gọi d là UCLN(16n+5;24n+7)

=>16n+5 chia hết cho d và 24n+7 chia hết cho d

Vì:16n+5 chia hết cho d=>48n+15 chia hết cho d

     24n+7 chia hết cho d=>48n+14 chia hết cho d

Ta có:(48n+15)-(48n+14) chia hết cho d

         =          1 chia hết cho d

Vì d=1 nên \(\frac{18n+5}{24n+7}\)là phân số tối giản với mọi n.

Mình làm bài này rồi,đề thi HSG lớp 6 có bài này.

Bình luận (0)
AP
7 tháng 6 2017 lúc 16:08

Dễ quá thôi!

Bình luận (0)
DC
Xem chi tiết
NT
18 tháng 4 2015 lúc 5:52

Gọi d là ƯCLN(16n+5;24n+7)

=>16n+5 chia hết cho d và 24n+7 chia hết cho d

=>3(16n+5) chia hết cho d và 2(24n+7) chia hết cho d

=>48n+15 chia hết cho d và 48n+14 chia hết cho d

=>(48n+15)-(48n+14) chia hết cho d

=>1 chia hết cho d

=>d=1;ƯCLN(16n+5;24n+7)=1

Vì ƯCLN(16n+5;24n+7)=1 nên 16n+5/24n+7 tối giản

Bình luận (0)
NG
Xem chi tiết
NT
16 tháng 10 2015 lúc 11:02

Nói đúng rồi Mai Nguyễn Bảo Phương

Bình luận (0)
H24
Xem chi tiết
SG
8 tháng 10 2016 lúc 17:26

Gọi d = ƯCLN(n + 5; n + 6) (d \(\in\) N*)

\(\Rightarrow\begin{cases}n+5⋮d\\n+6⋮d\end{cases}\)\(\Rightarrow\left(n+6\right)-\left(n+5\right)⋮d\)

\(\Rightarrow1⋮d\)

Mà \(d\in\) N* => d = 1

=> ƯCLN(n + 5; n + 6) = 1

=> n + 5 và n + 6 là 2 số nguyên tố cùng nhau (đpcm)

Bình luận (2)
SG
9 tháng 10 2016 lúc 10:26

c) Gọi d = ƯCLN(16n + 5; 24n + 7) (d \(\in\) N*)

\(\Rightarrow\begin{cases}16n+5⋮d\\24n+7⋮d\end{cases}\)\(\Rightarrow\begin{cases}3.\left(16n+5\right)⋮d\\2.\left(24n+7\right)⋮d\end{cases}\)\(\Rightarrow\begin{cases}48n+15⋮d\\48n+14⋮d\end{cases}\)

\(\Rightarrow\left(48n+15\right)-\left(48n+14\right)⋮d\)

\(\Rightarrow1⋮d\)

Mà d \(\in\) N* => d = 1

=> ƯCLN(16n + 5; 24n + 7) = 1

=> 16n + 5 và 24n + 7 là 2 số nguyên tố cùng nhau (đpcm)

Bình luận (1)
TC
Xem chi tiết
H24
Xem chi tiết
NM
12 tháng 12 2017 lúc 9:48

Gọi d la USC của 9n+7 và 4n+3

=> 4(9n+7)=36n+28 chia hết cho d

=> 9(4n+3)=36n+27 chia hết cho d

=> 36n+28 - 36n-27 =1 chia hết cho d => d=1

=> 9n+7 và 4n+3 là hai số nguyên tố cùng nhau

Bình luận (0)
NT
12 tháng 12 2017 lúc 9:52

Đặt ƯCLN ( 9n + 7 , 4n + 3 ) = d

=> \(\hept{\begin{cases}9n+7⋮d\\4n+3⋮d\end{cases}}\)=> \(\hept{\begin{cases}4.\left(9n+7\right)⋮d\\9.\left(4n+3\right)⋮d\end{cases}}\)=>\(\hept{\begin{cases}36n+28⋮d\\36n+27⋮d\end{cases}}\)=> ( 36n + 28 ) - ( 36n + 27 ) \(⋮d\)

=> 1 \(⋮d\)=> d thuộc Ư ( 1 ) = 1 Mà d lớn nhất => d = 1

Vậy 9n + 7 và 4n + 3 là hai số nguyên tố cùng nhau

Bình luận (0)
LC
16 tháng 12 2018 lúc 9:25

Gọi d là ƯC của 9n+7 và 4n+3

Ta có: 9n+7=4(9n+7)=36n+28 chia hết cho d

          4n+3=9(4n+3)=36n+27 chia hết cho d

Suy ra:36n thuộc ƯC (28,27)

Ta có:28=2 mũ 2 nhân 7

         27=3 mũ 3

ƯCNN(28,27)=1

Suy ra:ƯC (28,27) =1

Suy ra: 1chia hết cho d và d bé hoặc bằng 1

Vậy 4n+3 và 9n+7 là 2 số nguyên tố cùng nhau

Bình luận (0)
SN
Xem chi tiết
NF
12 tháng 11 2017 lúc 13:31

Gọi d là Ước chung lớn nhất của 5n+9 và 4n+7

=> 5n+9 chia hết cho d

     4n+7 chia hết cho d

=> 4( 5n + 9 ) - 5( 4n + 7 ) chia hết cho d

=> ( 20n + 36 ) - ( 20n + 35 ) chia hết cho d

=> 1 chia hết cho d

=> d = 1 

Vậy 5n+9 và 4n+7 là hai số nguyên tố cùng nhau 

Bình luận (0)
NT
Xem chi tiết