Đại số lớp 6

H24

Chứng minh rằng các số sau là các SNT cùng nhau

a) n+5 , n+6

b) 2n+3 và n+2

c) 16n+5 ,24n+7

d) 2n + 3 , 4n+8

SG
8 tháng 10 2016 lúc 17:26

Gọi d = ƯCLN(n + 5; n + 6) (d \(\in\) N*)

\(\Rightarrow\begin{cases}n+5⋮d\\n+6⋮d\end{cases}\)\(\Rightarrow\left(n+6\right)-\left(n+5\right)⋮d\)

\(\Rightarrow1⋮d\)

Mà \(d\in\) N* => d = 1

=> ƯCLN(n + 5; n + 6) = 1

=> n + 5 và n + 6 là 2 số nguyên tố cùng nhau (đpcm)

Bình luận (2)
SG
9 tháng 10 2016 lúc 10:26

c) Gọi d = ƯCLN(16n + 5; 24n + 7) (d \(\in\) N*)

\(\Rightarrow\begin{cases}16n+5⋮d\\24n+7⋮d\end{cases}\)\(\Rightarrow\begin{cases}3.\left(16n+5\right)⋮d\\2.\left(24n+7\right)⋮d\end{cases}\)\(\Rightarrow\begin{cases}48n+15⋮d\\48n+14⋮d\end{cases}\)

\(\Rightarrow\left(48n+15\right)-\left(48n+14\right)⋮d\)

\(\Rightarrow1⋮d\)

Mà d \(\in\) N* => d = 1

=> ƯCLN(16n + 5; 24n + 7) = 1

=> 16n + 5 và 24n + 7 là 2 số nguyên tố cùng nhau (đpcm)

Bình luận (1)

Các câu hỏi tương tự
NH
Xem chi tiết
H24
Xem chi tiết
PA
Xem chi tiết
H24
Xem chi tiết
RS
Xem chi tiết
HD
Xem chi tiết
H24
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết