Những câu hỏi liên quan
H24
Xem chi tiết
H24
6 tháng 1 2022 lúc 17:15

x3+27+(x+3)(x+9)

= (x+3)(x2-3x+9)+(x+3)(x+9)

= (x+3)(x2-3x+9+x+9)

=(x+3)(x2-2x+18)

Bình luận (0)
NM
6 tháng 1 2022 lúc 17:16

\(=\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)\\ =\left(x+3\right)\left(x^2-3x+9+x-9\right)\\ =\left(x+3\right)\left(x^2-2x\right)=x\left(x-2\right)\left(x+3\right)\)

Bình luận (0)
PT
6 tháng 1 2022 lúc 17:16

x3+27+(x+3)(x+9)

= (x+3)(x2-3x+9)+(x+3)(x+9)

= (x+3)(x2-3x+9+x+9)

=(x+3)(x2-2x+18)

Bình luận (0)
LD
Xem chi tiết
GH
Xem chi tiết
LL
28 tháng 9 2021 lúc 11:02

\(x^3-64x=x\left(x^2-64\right)=x\left(x-8\right)\left(x+8\right)\)

Bình luận (0)
H24
28 tháng 9 2021 lúc 11:02

𝑥(𝑥−8)(𝑥+8)

 
Bình luận (0)
H24
Xem chi tiết
NH
29 tháng 10 2017 lúc 20:12

Phân tích đa thức thành nhân tử

(x+3)(x6)+x29

Tk                                      nha !

Bình luận (0)
PT
29 tháng 10 2017 lúc 20:18

\(\left(x+3\right)\left(x-6\right)+x^2-9\)

\(=x^2-3x-18+x^2-9\)

\(=2x^2-3x-27\)

\(=\left(2x^2+6x\right)-\left(9x+27\right)\)

\(=\left(x+3\right)\left(2x-9\right)\)

Bình luận (0)
TN
Xem chi tiết
TC
28 tháng 9 2017 lúc 22:51

a.\(\left(x^2+x\right)^2+3\left(x^2+x\right)+2=\left(x^2+x\right)^2+2\left(x^2+x\right)+\left(x^2+x+2\right)\)

\(=\left(x^2+x\right)\left(x^2+x+2\right)+\left(x^2+x+2\right)=\left(x^2+x+2\right)\left(x^2+x+1\right)\)

b. \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left[x\left(x+3\right)\right]\left[\left(x+1\right)\left(x+2\right)\right]+1\)

\(=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)(1)

Đặt \(t=x^2+3x\)

(1) \(\Leftrightarrow t\left(t+2\right)+1\)

\(=t^2+2t+1=\left(t+1\right)^2\)(2)

Thay \(t=x^2+3x\)vào (2) t/có:

\(\left(t+1\right)^2=\left(x^2+3x+1\right)^2\)

c. dài lắm mình lười làm, bn bấm thử mạng tìm ik nhớ tíck cho mình nha thanks

Bình luận (0)
H24
30 tháng 9 2017 lúc 10:55

c) ab(a+b)+bc(b+c)+ac(c+a)+3abc
= ab(a+b)+abc+bc(b+c)+abc+ac(a+c)+abc
=ab(a+b+c)+bc(b+c+a)+ac(a+c+b)
=(a+b+c)(ab+bc+ac)
 

Bình luận (0)
PT
Xem chi tiết
LD
11 tháng 10 2020 lúc 10:33

Rút gọn thôi chứ phân tích sao được ._.

( x - 3 )2 - ( 4x + 5 )2 - 9( x + 1 )2 - 6( x - 3 )( x + 1 )

= x2 - 6x + 9 - ( 16x2 + 40x + 25 ) - 9( x2 + 2x + 1 ) - 6( x2 - 2x - 3 )

= x2 - 6x + 9 - 16x2 - 40x - 25 - 9x2 - 18x - 9 - 6x2 + 12x + 18

= -30x2 - 52x - 7

Bình luận (0)
 Khách vãng lai đã xóa
ND
11 tháng 10 2020 lúc 10:48

Sửa đề lại 1 chút là phân tích được mà bn Quỳnh:))

Ta có: \(\left(x-3\right)^2-\left(4x+5\right)^2+9\left(x+1\right)^2-6\left(x-3\right)\left(x+1\right)\)

\(=\left[\left(x-3\right)^2-6\left(x-3\right)\left(x+1\right)+9\left(x+1\right)^2\right]-\left(4x+5\right)^2\)

\(=\left(x-3-9x-9\right)^2-\left(4x+5\right)^2\)

\(=\left(8x+12\right)^2-\left(4x+5\right)^2\)

\(=\left(4x+7\right)\left(12x+17\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
HG
Xem chi tiết
H24
6 tháng 12 2023 lúc 20:39

\(5x(2x+3)+6x+9\\=5x(2x+3)+3(2x+3)\\=(2x+3)(5x+3)\)

Bình luận (2)
NT
6 tháng 12 2023 lúc 20:40

a: \(5x\left(2x+3\right)+6x+9\)

\(=5x\left(2x+3\right)+\left(6x+9\right)\)

\(=5x\left(2x+3\right)+3\left(2x+3\right)\)

\(=\left(2x+3\right)\left(5x+3\right)\)

b: \(3x\left(x+4\right)+48\left(x+4\right)+5\left(x+4\right)\)

\(=\left(x+4\right)\left(3x+48+5\right)\)

=(x+4)(3x+53)

 

Bình luận (0)
LN
Xem chi tiết
ND
14 tháng 10 2020 lúc 17:40

Đến đây là PT tích r còn gì, \(x\in\left\{5;-10;-\sqrt{3}\right\}\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
14 tháng 10 2020 lúc 17:42

:v ez mà :) Sửa đề : tìm x 

\(\left(2x-10\right)\left(x+10\right)\left(x+\sqrt{3}\right)=0\)

TH1 : \(2x-10=0\Leftrightarrow x=5\)

TH2 : \(x+10=0\Leftrightarrow x=-10\)

TH3 : \(x+\sqrt{3}=0\Leftrightarrow x=-\sqrt{3}\)( vô lí )

Vậy x = 5 ; x = -10 

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
TL
10 tháng 7 2021 lúc 21:52

`(x+3)^4+(x+5)^4-2`

`={[(x+3)^2]^2-1^2}+{[(x+5)^2]^2 -1^2}`

`=[(x+3)^2-1^2][(x+3)^2+1]+[(x+5)^2-1^2][(x+5)^2+1]`

`=(x+3-1)(x+3+1)[(x+3)^2+1]+(x+5-1)(x+5+1)[(x+5)^2+1]`

`=(x+2)(x+4)[(x+3)^2+1]+(x+4)(x+6)[(x+5)^2+1]`

`=(x+4){(x+2)[(x+3)^2+1]+(x+6)[(x+5)^2+1]}`

`=(x+4)(2x^3+24x^2+108x+176)`

Bình luận (3)
NT
10 tháng 7 2021 lúc 22:46

\(\left(x+3\right)^4+\left(x+5\right)^4-2\)

\(=\left[\left(x+3\right)^4-1\right]+\left[\left(x+5\right)^4-1\right]\)

\(=\left[\left(x^2+6x+9-1\right)\left(x^2+6x+9+1\right)\right]+\left[\left(x^2+10x+25-1\right)\left(x^2+10x+25+1\right)\right]\)

\(=\left(x^2+6x+8\right)\left(x^2+6x+10\right)+\left(x^2+10x+24\right)\left(x^2+10x+26\right)\)

\(=\left(x+2\right)\left(x+4\right)\left(x^2+6x+10\right)+\left(x+4\right)\left(x+6\right)\left(x^2+10x+26\right)\)

\(=\left(x+4\right)\left[\left(x+2\right)\left(x^2+6x+10\right)+\left(x+6\right)\left(x^2+10x+26\right)\right]\)

\(=\left(x+4\right)\left(x^3+6x^2+10x+2x^2+12x+20+x^3+10x^2+26x+6x^2+60x+156\right)\)

\(=\left(x+4\right)\left(2x^3+24x^2+108x+176\right)\)

\(=2\left(x+4\right)\left(x^3+12x^2+54x+88\right)\)

Bình luận (0)