Chứng minh tổng lập phương ba số nguyên liên tiếp nhau chia hết cho 9.
chứng minh: Tổng lập phương của ba số nguyên liên tiếp thì chia hết cho 9
Gọi 3 số nguyên liên tiếp là a; a + 1; a + 2 (a thuộc Z)
Ta có \(\left[a+\left(a+1\right)+\left(a+2\right)\right]^3=\left(3a+3\right)^3=\left[3\left(a+1\right)\right]^3=27\left(a+1\right)^3⋮9\)
=> đpcm
Tổng lập phương mà Hùng :
\(a^3+\left(a+1\right)^3+\left(a+2\right)^3\)
a)Gọi ba số nguyên liên tiếp là a, a+1, a+2
ta có cấc+a+1+a+2=3a+3
vì 3a chia hết cho 3
3 chia hết cho 3
nên tổng của 3 số nguyên liên tiếp thì chia hết cho 3
b)Gọi 5 số nguyên liên tiếp là a,a+1,a+2.a+3.a+4
ta có:a+a+1+a+2+a+3+a+4=10a+5 chia hết cho 5
chúc bạn học tốt !!!
Chứng minh rằng tổng các lập phương ba số nguyên liên tiếp thì chia hết cho 9
GIÚP MIK VỚI
Bạn sang hoidap247 sẽ đc giải quyết câu hỏi nhanh hơn nhé
くらにみくちなそちにきにしちんくちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちち
Gọi số nguyên đó là a (a \(\inℤ\))
Ta có : a3 + (a + 1)3 + (a + 2)3
= a3 + a3 + 3a2 + 3a + 1 + a3 + 6a2 + 12a + 8
= 3a3 + 9a2 + 15a + 9
= 3a3 - 3a + 9a2 + 18a + 9
= 3a(a2 - 1) + 9(a2 + 2a + 1)
= 3(a - 1)a(a + 1) + 9(a + 1)2
Vì (a - 1)a(a + 1) là tích 3 số nguyên liên tiếp
=> Tồn tại 1 số chia hết cho 3
=> 3(a - 1)a(a + 1) \(⋮\)9
=> 3(a - 1)a(a + 1) + 9(a + 1)2 \(⋮\)9
=> a3 + (a + 1)3 + (a + 2)3 \(⋮\)9 => ĐPCM
Chứng minh rằng:
x2 + 5y2 + 2x - 4xy - 10y + 14 > 0 với mọi x, y.
8. Tổng ba số bằng 9, tổng bình phương của chúng bằng 53. Tính tổng các tích của hai số trong ba số ấy.
9. Chứng minh tổng các lập phương của ba số nguyên liên tiếp thì chia hết cho 9
Chứng minh rằng Tổng các lập phương của ba số tự nhiên liên tiếp chia hết cho 9
Chứng minh tổng các lập phương của 3 số nguyên liên tiếp chia hết cho 9
Gọi 3 số nguyên liên tiếp lần lượt là (a - 1), a, (a + 1)
****chứng minh: (a - 1)^3 + a^3 + (a + 1)^3 chia hết cho 9
(a - 1)^3 + a^3 + (a + 1)^3=a^3 - 3a^2 + 3a - 1 + a^3 + a^3 + 3a^2 + 3a +1 = 3a^3 + 6a
= 3a(a^2 + 2) = 3a(a^2 - 1) + 9a
= 3(a - 1)a(a + 1) + 9a
vì tíck của 3 sôd tự nhiên liên tiếp chia hhết cho 3 nên 3(a - 1)a(a + 1) chia hết cho 9
Mặt khác 9a chia hết cho 9 nên
==>3(a - 1)a(a + 1) + 9a
Gọi 3 số nguyên liên tiếp lần lượt là (a - 1), a, (a + 1)
****chứng minh: (a - 1)^3 + a^3 + (a + 1)^3 chia hết cho 9
(a - 1)^3 + a^3 + (a + 1)^3
=a^3 - 3a^2 + 3a - 1 + a^3 + a^3 + 3a^2 + 3a +1
= 3a^3 + 6a
= 3a(a^2 + 2)
= 3a(a^2 - 1) + 9a
= 3(a - 1)a(a + 1) + 9a
vì tíck của 3 sôd tự nhiên liên tiếp chia hhết cho 3 nên 3(a - 1)a(a + 1) chia hết cho 9
Mặt khác 9a chia hết cho 9 nên
=>3(a - 1)a(a + 1) + 9a
hay ta đc điều phải chứng minh
Chứng minh
a, Tích hai số nguyên liên tiếp luôn chia hết cho 2
b,Tích ba số nguyên liên tiếp chia hết cho 6
c,Tổng lập phương của ba số nguyên liên tiếp luôn chia hết cho 9
d,n^3+11n chia hết cho 6 với mọi n là số nguyên
e,n^5-5n^3+4n chia hết cho 120 với mọi n là số tự nhiên
trình bày cho mình luôn nha!!!!!!
Chứng minh rằng :Tổng lập phương của 3 số nguyên liên tiếp chia hết cho 9 !!
Gọi 3 số nguyên liên tiếp là x -1 ; x ; x + 1 .
Ta có : (x - 1)3 + x3 + (x + 1)3
= x3 - 1 - 3x(x - 1) + x3 + x3 + 1 + 3x(x + 1)
= 3x3 - 3x(x - 1 - x - 1)
= 3x3 + 6x
= 3x3 - 3x + 9x
= 3(x - 1)x(x + 1) +9x
Vì (x - 1)x(x + 1) chia hết cho 3 nên 3(x - 1)x(x + 1) chia hết cho 9
Vì 9 chia hết cho 9 nên 9x chia hết cho 9
=> 3(x - 1)x(x + 1) + 9x chia hết cho 9
=> ĐPCM
Chứng minh rằng tổng lập phương của 3 số nguyên liên tiếp thì chia hết cho 9.
Chứng minh rằng tổng các lập phương của ba số tự nhiên liên tiếp chia hết cho 9
hu hu.. ! lần này mình tự làm nếu còn giống của bạn nào thì đừng bảo mình coppy nhé ! cai nay tu minh biet nen minh tu lam day !
Gọi 3 số nguyên liên tiếp lần lượt là (a - 1), a, (a + 1)
chứng minh: (a - 1)^3 + a^3 + (a + 1)^3 chia hết cho 9
=>(a - 1)^3 + a^3 + (a + 1)^3=a^3 - 3a^2 + 3a - 1 + a^3 + a^3 + 3a^2 + 3a +1 = 3a^3 + 6a
= >3a(a^2 + 2) = 3a(a^2 - 1) + 9a
= >3(a - 1)a(a + 1) + 9a
ta da biet tíck của 3 sô tự nhiên liên tiếp chia hhết cho 3 nên 3(a - 1)a(a + 1) chia hết cho 9
Mặt khác 9a chia hết cho 9 nên
=>3(a - 1)a(a + 1) + 9a
hay ta dc điều phải chứng minh
gọi ba số tự nhiên đó là a,a+1,a+2
theo bài ta có
(a+a+1+a+2)3
=(a+a+a+1+2)3
=(a+a+a+3)3
=(a+a+a)3+27
mà (a+a+a)3 chia hết cho 3
nên (a+a+a)3 chia het cho 9
do 27 chia het cho 9
nen (a+a+a)3+27 chia het cho 9
vậy ............................