Những câu hỏi liên quan
VV
Xem chi tiết
TN
Xem chi tiết
H24
18 tháng 9 2023 lúc 20:48

\(a,C=5+5^2+5^3+5^4+\cdot\cdot\cdot+5^{20}\)

\(=5\left(1+5+5^2+\cdot\cdot\cdot+5^{19}\right)\)

Ta thấy: \(5\left(1+5+5^2+\cdot\cdot\cdot+5^{19}\right)⋮5\)

nên \(C⋮5\)

\(b,C=5+5^2+5^3+5^4\cdot\cdot\cdot+5^{20}\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+\cdot\cdot\cdot+\left(5^{19}+5^{20}\right)\)

\(=5\left(1+5\right)+5^3\left(1+5\right)+\cdot\cdot\cdot+5^{19}\left(1+5\right)\)

\(=5\cdot6+5^3\cdot6+\cdot\cdot\cdot+5^{19}\cdot6\)

\(=6\cdot\left(5+5^3+\cdot\cdot\cdot+5^{19}\right)\)

Ta thấy: \(6\cdot\left(5+5^3+\cdot\cdot\cdot+5^{19}\right)⋮6\)

nên \(C⋮6\)

\(c,C=5+5^2+5^3+5^4+\cdot\cdot\cdot+5^{20}\)

\(=\left(5+5^3\right)+\left(5^2+5^4\right)+\cdot\cdot\cdot+\left(5^{17}+5^{19}\right)+\left(5^{18}+5^{20}\right)\)

\(=5\left(1+5^2\right)+5^2\left(1+5^2\right)+\cdot\cdot\cdot+5^{17}\cdot\left(1+5^2\right)+5^{18}\left(1+5^2\right)\)

\(=5\cdot26+5^2\cdot26+\cdot\cdot\cdot+5^{17}\cdot26+5^{18}\cdot26\)

\(=26\cdot\left(5+5^2+\cdot\cdot\cdot+5^{17}+5^{18}\right)\)

Ta thấy: \(26\cdot\left(5+5^2+\cdot\cdot\cdot+5^{17}+5^{18}\right)⋮13\)

nên \(C⋮13\)

#\(Toru\)

Bình luận (0)
H24
18 tháng 9 2023 lúc 21:40
a, ta có
C = 5 + 5^2 + 5^3 + 5^4 + ... + 5^20
=> C = 5 . ( 1 + 5 + 5^2 + 5^3 + ... + 5^19 )
=> C chia hết cho 5
b,
C = 5 + 5^2 + 5^3 + 5^4 + ... + 5^20
=> C = 5 . ( 1 + 5 ) + 5^3 . ( 1 + 5 ) + ... + 5^19 . ( 1 + 5 )
=> C = 5 . 6 + 5^3 . 6 + ... + 5^19 . 6
=> C = 6 . ( 5 + 5^3 + ... + 5^19 )
=> C chia hết cho 6
c,
C = 5 + 5^2 + 5^3 + ... + 5^20
=> C = (5 + 5^2 + 5^3 + 5^4 ) + ... + (5^17 + 5^18 + 5^19 + 5^20 )
=> C = 5 . ( 1 + 5 + 5^2 + 5^3 ) + ... + 5^17 . ( 1+ 5 + 5^2 +5^3)
=> C = 5 . 156 + 5^5 . 156 + ...+ 5^17 . 156
=> C = 5 . 12 . 13 + 5^5 . 12 . 13 + ... + 5^17 . 12 . 13
=> C = 13 . ( 5 . 12 + 5^5 . 12 + ... + 5^17 . 12 )
=> C chia hết cho 13bucminh
Bình luận (0)
LV
Xem chi tiết
NT
4 tháng 10 2021 lúc 23:59

Bài 5: 

b: Ta có: \(n+6⋮n+2\)

\(\Leftrightarrow n+2\in\left\{2;4\right\}\)

hay \(n\in\left\{0;2\right\}\)

c: Ta có: \(3n+1⋮n-2\)

\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)

hay \(n\in\left\{1;3;9\right\}\)

Bình luận (0)
NP
Xem chi tiết
NL
Xem chi tiết
NC
Xem chi tiết
OY
21 tháng 8 2021 lúc 8:23

b) A=2+22+23+...+220

A=(2+22)+(23+24)+...+(219+220)

A=3.2+3.23+...+3.219

A=3.(2+23+25+...+219)

⇒A⋮3

phần c) làm tương tự

Bình luận (5)
LP
Xem chi tiết
TH
19 tháng 2 2022 lúc 20:45

a) \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4\left(49+7-1\right)=7^4.55⋮55\)

b) \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\left(32+1\right)=2^{15}.33⋮33\)

c) \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}.5=3^{22}.3^4.5=3^{22}.405⋮405\)

Bình luận (0)
NT
19 tháng 2 2022 lúc 20:41

a: \(=7^4\left(7^2+7-1\right)=7^4\cdot55⋮55\)

b: \(=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\cdot33⋮33\)

c: \(=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}\cdot5=3^{22}\cdot405⋮405\)

Bình luận (0)
NL
19 tháng 2 2022 lúc 21:33

a)           7^0 = 0 ; 7^1=7 ; 7^2 = 49 ; 7^3 = 343 ; 7^4=2401 ; 7^5 = 16807 ;.....

⟹ 7 có số mũ là số chẵn thì thường có chữ số tận cùng là 1,9

7^6 =......9 ; 7^5=......7 ; 7^4=......1

⟹ ....9 +.....7-....1=5

mà 55=5.11⟹ 7^6 +7^5-7^4 : 5 thì : 55

mà số chia hết cho 5 thì có tận cùng là 0,5 .phéptính 7^6+7^5=7^4 có tận cùng là 5 ⟹ 7^6+7^5-7^4 : 55 

vậy 7^6+7^5-7^4 : 55

 

Bình luận (0)
NC
Xem chi tiết
NT
21 tháng 8 2021 lúc 22:37

a: Ta có: \(A=2+2^2+2^3+...+2^{20}\)

\(=2\left(1+2+2^2+...+2^{19}\right)⋮2\)

b: Ta có: \(A=2+2^2+2^3+...+2^{20}\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{19}\left(1+2\right)\)

\(=3\cdot\left(2+2^3+...+2^{19}\right)⋮3\)

Bình luận (1)
H24
21 tháng 8 2021 lúc 22:39

c) tham khảo:

M = 2 + 22 + 23 + ... + 220
= ( 2 + 22 + 23 + 24 ) + ( 25 + 26 + 27 + 28 ) + ... + ( 217 + 218 + 219 + 220 )
= 2 . ( 1 + 2 + 22 + 23 ) + 25 . ( 1 + 2 + 22 + 23 ) + ... + 217 . ( 1 + 2 + 22 + 23 )
= 2 . 15 + 25 . 15 + ... + 217 .15
= 15 . 2 ( 1 + 24 + ... + 216 )
= 3 . 5 . 2 ( 1 + 24 + ... + 216 ) \(⋮\) 5

Bình luận (0)
AH
21 tháng 8 2021 lúc 22:39

Lời giải:
a. 

$A=2(1+2^1+2^2+...+2^{19})\vdots 2$

b. 

$A=(2+2^2)+(2^3+2^4)+.....+(2^{19}+2^{20})$

$=2(1+2)+2^3(1+2)+....+2^{19}(1+2)$

$=2.3+2^3.3+...+2^{19}.3$

$=3(2+2^3+...+2^{19})\vdots 3$

c.

$A=(2+2^2+2^3+2^4)+(2^5+2^6+2^7+2^8)+....+(2^{17}+2^{18}+2^{19}+2^{20})$

$=2(1+2+2^2+2^3)+2^5(1+2+2^2+2^3)+....+2^{17}(1+2+2^2+2^3)$

$=2.15+2^5.15+....2^{17}.15$
$=15(2+2^5+...+2^{17})$
$=5.3.(2+2^5+...+2^{17})\vdots 5$

Bình luận (0)
PL
Xem chi tiết
GD

\(C=1+3+3^2+3^3+...+3^{11}\\ a,C=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+\left(3^6+3^7+3^8\right)+\left(3^9+3^{10}+3^{11}\right)\\ =13+3^3.\left(1+3+3^2\right)+3^6.\left(1+3+3^2\right)+3^9.\left(1+3+3^2\right)\\ =13+3^3.13+3^6.13+3^9.13\\ =13.\left(1+3^3+3^6+3^9\right)⋮13\)

Ý a phải chia hết cho 13 chứ em?

Bình luận (0)
NT
24 tháng 7 2023 lúc 11:21

b: C=(1+3+3^2+3^3)+...+3^8(1+3+3^2+3^3)

=40(1+...+3^8) chia hết cho 40

a: C ko chia hết cho 15 nha bạn

Bình luận (0)
GD

\(b,C=\left(1+3+3^2+3^3\right)+\left(3^4+3^5+3^6+3^7\right)+\left(3^8+3^9+3^{10}+3^{11}\right)\\ =40+3^4.\left(1+3+3^2+3^3\right)+3^8.\left(1+3+3^2+3^3\right)\\ =40.\left(1+3^4+3^8\right)⋮40\)

Bình luận (0)
NC
Xem chi tiết
AH
24 tháng 8 2021 lúc 0:05

Lời giải:
a.

\(\overline{abc}=100a+10b+c\)

Vì $a,b$ là số chẵn nên $100a\vdots 4; 10b\vdots b$

Mà $\overline{abc}=100a+10b+c\vdots 4$

$\Rightarrow c\vdots 4$

(đpcm)

b.

$\overline{bac}=100b+10a+c$

$=100a+10b+c+(90b-90a)=\overline{abc}+90(b-a)$

Vì $b,a$ chẵn nên $b-a$ chẵn

$\Rightarrow 90(b-a)=45.2(b-a)\vdots 4$

Kết hợp với $\overline{abc}\vdots 4$

Do đó: $\overline{bac}=\overline{abc}+90(b-a)\vdots 4$

(đpcm)

 

Bình luận (5)