Những câu hỏi liên quan
NB
Xem chi tiết
TN
22 tháng 10 2016 lúc 17:47

Đề đúng \(3+\frac{a}{2b}+\frac{2b}{3c}+\frac{3c}{a}\ge a+2b+3c+\frac{1}{a}+\frac{1}{2b}+\frac{1}{3c}\) 

Ta thấy: 

\(a\cdot2b\cdot3c=1\) nên ta đặt \(a=\frac{y}{x};2b=\frac{z}{y};3c=\frac{x}{z}\)

Khi đó \(VT\ge VP\Leftrightarrow\frac{3xyz+x^3+y^3+z^3}{xyz}\)

\(\ge\frac{x^2y+y^2x+y^2z+z^2y+x^2z+z^2x}{xyz}\)

\(\Leftrightarrow3xyz+x^3+y^3+z^3-x^2y-y^2x-y^2z-z^2y-z^2x-x^2z\ge0\)

\(\Leftrightarrow x\left(x-y\right)\left(x-z\right)+y\left(y-z\right)\left(y-x\right)+z\left(z-x\right)\left(z-y\right)\ge0\)

Đúng theo Bđt Schur

Vậy Bđt đc chứng minh

Bình luận (0)
NH
Xem chi tiết
LQ
Xem chi tiết
DV
29 tháng 6 2015 lúc 12:45

Điều đó là đương nhiên mà. Giả sử x2 + y2 + z2 = 5 thì x2 + y2 + z\(\le\) 

Bình luận (0)
ML
29 tháng 6 2015 lúc 16:09

Áp dụng bất đẳng thức Bu.nhia.cop.xki cho 2 bộ 3 số: 

\(\left(a+2b+3c\right)^2=\left(1.a+\sqrt{2}.\sqrt{2}b+\sqrt{3}.\sqrt{3}c\right)^2\)

\(\le\left(1+2+3\right)\left(a^2+2b^2+3c^2\right)=6.6=36\)

\(\Rightarrow\left|a+2b+3c\right|\le6\)

\(\Rightarrow-6\le a+2b+3c\le6\)

Bình luận (0)
H24
Xem chi tiết
NN
Xem chi tiết
NT
14 tháng 3 2019 lúc 18:05

Web có hơn 600 nghìn câu hỏi mà toàn thấy câu hỏi giống nhau với câu thấy nhiều đến chảy hết nước mắt rồi

Bình luận (0)
VH
Xem chi tiết
VH
3 tháng 4 2020 lúc 8:38

\(M=\left(a-\frac{6}{a+1}\right)+\left(2b-\frac{3}{b+1}\right)+\left(3c-\frac{2}{c+1}\right)\)

\(M=\left(a+2b+3c\right)-6\left(\frac{1}{a+1}+\frac{1}{2b+2}+\frac{1}{3c+3}\right)\)

\(M\le6-\frac{6.\left(1+1+1\right)^2}{a+1+2b+2+3c+3}\)

\(M\le6-\frac{6.9}{6+6}=6-\frac{9}{2}=\frac{3}{2}\)

Đẳng thức xảy ra khi \(a=3;b=1;c=\frac{1}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
BV
Xem chi tiết
KS
Xem chi tiết
NQ
Xem chi tiết