dùng phân tích đa thức thành nhân tử để tìm x
x(x+2)(x+4)(x+6)=0
\(x^4+1\)
dùng phương pháp thêm bớt cùng một hạng tử để phân tích đa thức thành nhân tử
\(=x^4+2x^2+1-\left(\sqrt{2}x\right)^2\)
\(=\left(x^2+1\right)^2-\left(\sqrt{2}x\right)^2\)
\(=\left(x^2+1-\sqrt{2}x\right)\left(x^2+1+\sqrt{2}x\right)\)
\(x^4+1\)
\(=x^4+2x^2+1-2x^2\)
\(=\left(x^2+1\right)^2-\left(x\sqrt{2}\right)^2\)
\(=\left(x^2-x\sqrt{2}+1\right)\left(x^2+x\sqrt{2}+1\right)\)
bằng sau này bn nhá
phân tích các đa thức sau thành nhân tử(bằng phuong pháp dùng ẩn phụ)
(x+4)(x+2)(6+x)(x+12)-165x2
\(x^4+4y^4=\left[\left(x^2\right)^2+4x^2y^2+\left(2y^2\right)^2\right]-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)
2.1: Phân tích đa thức thành nhân tử 2a)2x+4 b)x²+2xy+y²-9 2.2: Tìm x x.(x-2)+x-2=0
a: 2x+4=2(x+2)
b: \(x^2+2xy+y^2-9=\left(x+y-3\right)\left(x+y+3\right)\)
phân tích đa thức thành nhân tử
a) 3x*(x^2-4)=0
b) 2x^2-x-6=0
c) x*(x+2)-3x-6=0
a, 3x(x^2-4)=0
+3x=0=>x=0
+x^2-4=0
=>x^2=4
=>x=+-2
c,x(x+2)-3x-6=0
x(x+2)-3(x+2)=0
(x+2)(x-3)=0
TH1 :x+2=0
x=-2
TH2 : x-3=0
x=3
câu b bạn chờ mình chúc nha
nhớ k cho mình
8x ( x^2 - 9 ) = 0 tìm x phân tích đa thức thành nhân tử
\(\Leftrightarrow x\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
\(8x\left(x^2-9\right)=0\Rightarrow8x\left(x-3\right)\left(x+3\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x+3=0\\x-3=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm3\end{matrix}\right.\)
tìm x bằng phương pháp phân tích đa thức thành nhân tử :
x^2 - 4x - 6 = 0
x^2 + 2x - 2 = 0
x^2 - 4x - 6 = 0
<=>x2-4x+4-10=0
<=>(x-2)2=10
=>x-2=\(\sqrt{10}\)hoặc x-2=\(-\sqrt{10}\)
=>x=\(\sqrt{10}+2\)hoặc x=\(2-\sqrt{10}\)
x^2 + 2x - 2 = 0
<=>x2+2x+1-3=0
<=>(x+1)2=3
=>x+1=\(\sqrt{3}\)hoặc x+1=\(-\sqrt{3}\)
=>x=\(\sqrt{3}-1\)hoăc 5x=\(-1-\sqrt{3}\)
mấy baj này phaj làm như thế này thuj
10/ tìm x ( áp dụng kiến thức phân tích đa thức thành nhân tử) a,2-x = 2(x-2)^3 c,(x-1.5)^6 + 2(1,5-x)^3= 0 d,2x^3+3x^2+3+2x =0
a: Ta có: \(2-x=2\left(x-2\right)^3\)
\(\Leftrightarrow2\left(x-2\right)^3+x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left[2\left(x-2\right)^2+1\right]=0\)
\(\Leftrightarrow x-2=0\)
hay x=2
c: Ta có: \(\left(x-1.5\right)^6+2\left(1.5-x\right)^3=0\)
\(\Leftrightarrow\left(x-1.5\right)^6-2\left(x-1.5\right)^3=0\)
\(\Leftrightarrow\left(x-1.5\right)^3\cdot\left[\left(x-1.5\right)^3-2\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1.5\\x=\sqrt[3]{2}+1.5\end{matrix}\right.\)
phân tích đa thức thành nhân tử bằng phương pháp thêm bớt hạng tử để xuất hiện hằng đăng thức
x^4 + x^2 +1
phân tích đa thức thành nhân tử bằng phương pháp thêm hạng tử để xuất hiện thừa số chung
x^5 - x^4 - 1
x - x^10 + x^5 + 1
x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)
k mk nha
phân tích đa thức thành nhân tử bằng phương pháp thêm bớt hạng tử để xuất hiện hằng đăng thức
x^4 + x^2 +1
phân tích đa thức thành nhân tử bằng phương pháp thêm hạng tử để xuất hiện thừa số chung
x^5 - x^4 - 1
x - x^10 + x^5 + 1
x5-x4-1=x5-x3-x2-x4+x2+x+x3-x-1
=x2.(x3-x-1)-x.(x3-x-1)+(x3-x-1)
=(x3-x-1)(x2-x+1)
x^4+x^2+1 = (x^4+2x^2+1)-x^2 = (x^2+1)^2-x^2 = (x^2-x+1).(x^2+x+1)
k mk nha
Bài 1: Tìm x , Biết
a) (x-4) x - (x-3)^2=0
b) 3x-6 = x^2-16
c) (2x-3)^2 - 49=0
d) 2x (x-5) - 7 (5-x)=0
Bài 2: Tìm m để đa thức
A(x)= 2x^3 + x^2 - 4x + m chia hết cho đa thức B(x)= 2x-1
Bài 3 : Phân tích đa thức thành nhân tử
a) x^2 - 8x
b) x^2 - xy - 6x + 6y
Bài 1:
b: \(3x-6=x^2-16\)
\(\Leftrightarrow x^2-3x-10=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)