Những câu hỏi liên quan
LP
Xem chi tiết
NA
10 tháng 11 2017 lúc 21:57

a)Gọi ƯCLN(2n+1,2n+3) = d     (d thuộc N*)

=>2n+1 chia hết cho d và 2n+3 chia hết cho d

=>(2n+3)-(2n+1) chia hết cho d

=>2 chia hết cho d

=>d thuộc Ư(2)

Ta có: Ư(2)={1;2}

Vì 2n+1 và 2n+3 là số lẻ nên d không thể bằng 2

=>d=1

Vậy ƯCLN(2n+1,2n+3) = 1             (đpcm)

b)Gọi ƯCLN(2n+5,3n+7) = d         (d thuộc N*)

=>2n+5 chia hết cho d và 3n+7 chia hết cho d

=>6n+15 chia hết cho d và 6n+14 chia hết cho d 

=>(6n+15)-(6n+14) chia hết cho d

=>1 chia hết cho d

=>d thuộc Ư(1) =>d=1

Vậy ƯCLN(2n+5,3n+7) = 1             (đpcm)

Bình luận (0)
QT
14 tháng 11 2017 lúc 11:27

a) Đặt: ƯCLN(2n+1,2n+3) = d

Ta có: 2n+1 \(⋮\)d và 2n+3 \(⋮\)d

\(\Rightarrow\)(2n+3) - (2n+1) \(⋮\)d

\(\Leftrightarrow\)2n+3 - 2n-1 \(⋮\)d

\(\Leftrightarrow\)2\(⋮\)d

Vì 2n+3 ko chia hết cho 2

Nên 1\(⋮\)d

\(\Leftrightarrow\)d=1

Vậy ƯCLN( 2n+1,2n+3) = 1(đpcm)

b) Đặt ƯCLN( 2n+5,3n+7 ) = d

Ta có: 2n+5 \(⋮\)\(\Leftrightarrow\)3(2n+5) \(⋮\)d

                             \(\Leftrightarrow\)6n+15 \(⋮\)d

            3n+7\(⋮\)\(\Leftrightarrow\)2(3n+7) \(⋮\)d

                             \(\Leftrightarrow\)6n+14 \(⋮\)d

\(\Rightarrow\)(6n+15) - (6n+14)\(⋮\)d

\(\Leftrightarrow\)6n+15 - 6n - 14\(⋮\)d

\(\Leftrightarrow\)1\(⋮\)d

\(\Leftrightarrow\)d = 1

Vậy ƯCLN(2n+5,3n+7) = 1(đpcm)

Kb vs mk nha

Bình luận (0)
NH
Xem chi tiết
CH
21 tháng 11 2017 lúc 17:46

Sai đề rồi bạn nhé

3n+2+3N+3=1 thì mới giải đc

Bình luận (0)
AB
Xem chi tiết
HD
Xem chi tiết
DH
4 tháng 11 2015 lúc 21:14

a)Ta có: n+1 và 3n +4

Gọi d là ƯCLN ( n+1;3n+4)

Ta có n+1 chia hết cho d và 3n+4 cũng chia hết cho d.

        (3n+4)-(3n+3) = 1 chia hết cho d

Vậy hai số n+1 và 3n+4 là hai số nguyên rố cùng nhau.

b) Ta có: 2n+5 và 3n+7

Gọi d là ƯCLN(2n+5;3n+7)

Ta có 2n+5 chia hết cho d và 3n+7 cũng chia hết cho d

  ( 6n+15) - (6n +14) = 1 chia hết cho d

Vậy hai số 2n+5 và 3n+7 là hai số nguyên tố cùng nhau.

 

Bình luận (0)
HL
4 tháng 11 2015 lúc 20:53

trong câu hỏi tương tự ý đầy

Bình luận (0)
CU
4 tháng 11 2015 lúc 20:55

Nguyễn Thành Trung ham lik e thế

Bình luận (0)
QC
Xem chi tiết
NT
10 tháng 4 2022 lúc 9:13

a: Gọi d=UCLN(2n+1;2n+3)

\(\Leftrightarrow2n+3-2n-1⋮d\)

\(\Leftrightarrow2⋮d\)

mà 2n+1 là số lẻ

nên d=1

=>(2n+1;2n+3)=1

b: Gọi a=UCLN(2n+7;n+3)

\(\Leftrightarrow2n+7-2n-6⋮a\)

=>a=1

=>UCLN(2n+7;n+3)=1

Bình luận (0)
QN
Xem chi tiết
HQ
15 tháng 6 2017 lúc 10:45

a) Giải:

Đặt \(A_n=11^{n+2}+12^{2n+1}\)\((*)\) Với \(n=0\) ta có:

\(A_0=11^2+12^1=133\) \(⋮133\Rightarrow\) \((*)\) đúng

Giả sử \((*)\) đúng đến giá trị \(k=n\) tức là:

\(B_k=11^{k+2}+12^{2k+1}\) \(⋮133\left(1\right)\)

Xét \(B_{k+1}-B_k\)

\(=11^{k+1+2}+12^{2\left(k+1\right)+1}-\left(11^{k+2}+12^{2k+1}\right)\)

\(=11^{k+3}-11^{k+2}+12^{2k+3}-12^{2k+1}\)

\(=10.11^{k+2}+143.12^{2k+1}\)

\(=10.121.11^k+143.12.144^k\)

\(\equiv\) \(10.121.11^k+10.12.11^k\)

\(\equiv\) \(10.11^k\left(121+12\right)\) \(\equiv\) \(0\left(mod133\right)\)

Theo giả thiết quy nạy \(\left(1\right)\) ta có: \(B_k⋮133\Leftrightarrow B_{k+1}⋮133\)

Hay \((*)\) đúng với \(n=k+1\) \(\Rightarrow\) Đpcm

Bình luận (0)
H24
Xem chi tiết
ND
28 tháng 2 2017 lúc 11:33

Chứng tỏ các phân số sau tối giản với mọi n thuộc N

a,n+3/n+4

Để phân số \(\dfrac{n+3}{n+4}\) tối giản thì [n+3;(n+4)] là hai số nguyên tố cùng nhau thì:

[n+3;(n+4)]=1

Gọi d là ước chung lớn nhất[n+3;(n+4)]

\(\Rightarrow\) [n+3;(n+4)]=d

\(\Rightarrow\) n+3\(⋮\)d\(\Rightarrow\)n+3\(⋮\)d\(\Rightarrow\)n+3\(⋮\)d

\(\Rightarrow\)n+4\(⋮\)d\(\Rightarrow\)n+4\(⋮\)d\(\Rightarrow\)n+4\(⋮\)d

\(\Rightarrow\) [n+4;(n+3)]\(⋮\)d\(\Rightarrow\)[n+4-n-3]\(⋮\)d=>-1\(⋮\)d=>d=1

Nên n+4;n+3 là hai số nguyên tố cùng nhau

Vậy \(\dfrac{n+3}{n+4}\) là phân số tối giản


Bình luận (0)
NL
Xem chi tiết
DT
20 tháng 11 2017 lúc 20:31

A, 

Từ đề bài ta có

\(2n+3;2n+2⋮d\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

suy ra d=1 suy ra đpcm

B nhân 3 vào số đầu tiên

nhâm 2 vào số thứ 2

rồi trừ đi được đpcm

C,

Nhân 2 vào số đầu tiên rồi trừ đi được đpcm

Bình luận (0)
HH
Xem chi tiết
ND
24 tháng 9 2020 lúc 12:38

\(\text{Gọi ƯCLN}\left(2n+5;3n+7\right)=d\Rightarrow2n+5⋮d;3n+7⋮d\)

\(\Rightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}\Rightarrow\left(6n+15\right)-\left(6n+14\right)⋮d}\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d\in\left\{-1;1\right\}\)

\(\Rightarrow\text{ƯCLN}\left(2n+5;3n+7\right)=1\)

Bình luận (0)
 Khách vãng lai đã xóa