rut gon phan thuc
14x^2+ 7xy
4x^2 - y^2
2. x^3 - 8
2x^3 - 8x
giup minh nha cam on truoc
Rut gon phan thuc: (x^(3)-x^(2)-x-2)/(x^(5)-3x^(4)+4x^(3)-5x^(2)+3x-2)
Minh that su da bo tay vs bai tap nay roi! Cac ban hay giup minh nhe! Minh xin cam on!
\(\frac{x^3-x^2-x-2}{x^5-3x^4+4x^3-5x^2+3x-2}\)
\(=\frac{x^3-2x^2+x^2-2x+x-2}{x^5-2x^4-x^4+2x^3+2x^3-4x^2-x^2+2x+x-2}\)
\(=\frac{\left(x^3-2x^2\right)+\left(x^2-2x\right)+\left(x-2\right)}{\left(x^5-2x^4\right)-\left(x^4-2x^3\right)+\left(2x^3-4x^2\right)-\left(x^2-2x\right)+\left(x-2\right)}\)
\(=\frac{x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)}{x^4\left(x-2\right)-x^3\left(x-2\right)+2x^2\left(x-2\right)-x\left(x-2\right)+\left(x-2\right)}\)
\(=\frac{\left(x-2\right)\left(x^2+x+1\right)}{\left(x-2\right)\left(x^4-x^3+2x^2-x+1\right)}=\frac{x^2+x+1}{x^4-x^3+2x^2-x+1}\)
phan tich da thuc thanh nhan tu
1) X3+ 6x2 + 12xy + 8
2) x4- 4x3- 8x2 + 8x
3) x4+ 2x3 + x2- y2
giup minh nhe cam on
1.\(x^3+6x^2+12xy+8=x^3+3.2x^2+3.2^2x+2^3=\left(x+2\right)^3\)
3.\(x^4+2x^3+x^2-y^2=\left(x^2\right)^2+2x^2.x+x^2-y^2\)\(=\left(x^2+x\right)^2-y^2=\left(x^2+x-y\right)\left(x^2+x+y\right)\)
k mình nha bn !!!!!!! cái 2 bn xem lại đề đi, rồi mình giải cho
cau so 2 ne ban
x4 - 4x3- 8x2+ 8x
OK bn, 2.\(x^4-4x^3-8x^2+8x=x\left(x^3-4x^2-8x+8\right)\)
z thui bn !!! hì ^.^
Rut gon a biet a=(x^2-2x/2^2+8+2x^2/8-4x+2x^2-x^3)x(1-1/-2/^2)
Ai giup minh minh tick nha ::)))
rut gon phan thuc:
1 \(\dfrac{x^2-18x-19}{x^2-1}\)
2 \(\dfrac{x\left(4x^2-8x+4\right)}{2x^3-2x^2}\)
1) \(\dfrac{x^2-18x-19}{x^2-1}=\dfrac{x^2-19x+x-19}{\left(x-1\right)\left(x+1\right)}=\dfrac{x\left(x-19\right)+x-19}{\left(x-1\right)\left(x+1\right)}=\dfrac{\left(x-19\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{x-19}{x-1}\)
2) \(\dfrac{x\left(4x^2-8x+4\right)}{2x^3-2x^2}=\dfrac{4x\left(x^2-2x+1\right)}{2x^2\left(x-1\right)}=\dfrac{4x\left(x-1\right)^2}{2x^2\left(x-1\right)}=\dfrac{2\left(x-1\right)}{x}\)
1.=\(\dfrac{(x^2+x)-(19x+19)}{(x+1)(x-1)}\)
=\(\dfrac{x(x+1)-19(x+1)}{(x+1)(x-1)}\)
=\(\dfrac{(x+1)(x-19)}{(x+1)(x-1)}\)
=\(\dfrac{x-19}{x-1}\)
A= 2x^2 +2y^2 -x^2y + z -y^2z - 2
Rut gon bieu thuc
mn giup nhanh nha, thanks trc
Rút gọn biểu thức
\(=\left(1-y^2\right)z+2y^2+\left(-x^2\right)y+2x^2-2\)
phan tich da thuc sau thanh nhan tu
x^3+2x^2+x+2
giup minh nhe cam on nhieu
Ta có:
\(x^3+2x^2+x+2\)
\(=x^2\left(x+2\right)+\left(x+2\right)\)
\(=\left(x^2+1\right)\left(x+2\right)\)
x3+2x2+x+2=x2(x+2)+(x+2)
=(x2+1)(x+2)
rut gon phan thuc A=(x^3-6x+7)/(x^3+5x^2-2x-24)
1) Ket qua khi rut gon phan thuc \(\dfrac{x^2+2x+1}{x^3+1}\) la:
\(=\dfrac{\left(x+1\right)^2}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{x+1}{x^2-x+1}\)
1,tim x de bieu thuc sau co nghia \(\sqrt{x+\dfrac{3}{x}}+\sqrt{-3x}\)
b,\(\sqrt{x^2+4x+5}\)
c,\(\sqrt{2x^2+4x+5}\)
2, phan tich thanh nhan tu
a,\(x+5\sqrt{x}+6\) b,\(x+4\sqrt{x}+3\)
GIUP MINH VS MINH CAN GAP MINH CAM ON TRUOC NHA
\(1a.\) Để : \(\sqrt{x+\dfrac{3}{x}}+\sqrt{-3x}\) xác định thì :
\(x+\dfrac{3}{x}\) ≥ 0 và \(-3x\) ≥ 0
⇔ \(\dfrac{x^2+3}{x}\) ≥ 0 và : x ≤ 0 ⇔ x > 0 và : x ≤ 0 ( Vô lý )
⇔ x ∈ ∅
b. Để : \(\sqrt{x^2+4x+5}\) xác định thì :
\(x^2+4x+5\) ≥ 0
Mà : \(x^2+4x+5=\left(x+2\right)^2+1>0\)
Vậy , ........
c. Để : \(\sqrt{2x^2+4x+5}\) xác định thì :
\(2x^2+4x+5\) ≥ 0
Mà : \(2\left(x^2+2x+1\right)+3=2\left(x+1\right)^2+3>0\)
Vậy ,.........
Bài 2. \(a.x+5\sqrt{x}+6=x+2.\dfrac{5}{2}\sqrt{x}+\dfrac{25}{4}+6-\dfrac{25}{4}=\left(\sqrt{x}+\dfrac{5}{2}\right)^2-\dfrac{1}{4}=\left(\sqrt{x}+\dfrac{5}{2}-\dfrac{1}{2}\right)\left(\sqrt{x}+\dfrac{5}{2}+\dfrac{1}{2}\right)=\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)\)
\(b.x+4\sqrt{x}+3=x+\sqrt{x}+3\sqrt{x}+3=\sqrt{x}\left(\sqrt{x}+1\right)+3\left(\sqrt{x}+1\right)=\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)\)