cho x,y là số dương thỏa mãn x,y=5 và x^+y^2 = 18 Hãy tính giá trị của A=x^+y^4
Cho các số thực x và y thỏa mãn xy = 5 và x + y = 7 . Hãy tính giá trị của các biểu thức sau đây
a/ x ^2 + y^2
b / x^3 + y^3
c/ x^4 + y^4
d/ x ^5 + y^5
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
1; Tập hợp các giá trị của x thoả mãn:/x+3/-5=0
2;giá trị nguyên dương của x thỏa mãn :/x-1/=-[x-1] là?
3;cho 2 số nguyên x;y thỏa mãn :/x/+/y=7,giá trị lớn nhất của x.y là?
4;giá trị lớn nhất của biểu thức : -3-/x+2/ là?
5;GTLN của biểu thức ; 15-[x-2]^2 là ?
giúp mình với . mình đang cần gấp nhé!
cho x và y là 2 số dương thỏa mãn x+y=1 tìm giá trị nhỏ nhất của B=4/x+9/y
vì x y dương \(\Rightarrow\frac{4}{x}+\frac{9}{y}>=2\cdot\sqrt{\frac{36}{xy}}=2\cdot\frac{6}{\sqrt{xy}}=\frac{12}{\sqrt{xy}}\)(bđt cosi) dấu = xảy ra khi 4/x=9/y suy ra x= 4/9y và y=9/4x
\(\frac{4}{x}+\frac{9}{y}\)nhỏ nhất là \(\frac{12}{\sqrt{xy}}\)
\(\Rightarrow x+y=\frac{4}{9}y+y=\frac{13}{9}y=1\Rightarrow y=\frac{9}{13}\)
\(=x+\frac{9}{4}x=\frac{13}{4}x=1\Rightarrow x=\frac{4}{13}\)
\(\Rightarrow\frac{12}{\sqrt{xy}}=\frac{12}{\sqrt{\frac{9\cdot4}{13^2}}}=\frac{12}{\sqrt{\frac{36}{13^2}}}=\frac{12}{\frac{6}{13}}=12\cdot\frac{13}{6}=26\)
vậy b nhỏ nhất là 26 khi x=4/13 và y = 9/13
Cho x, y là các số thực dương thỏa mãn: \(x^3+y^3-6.\left(x^2+y^2\right)+13.\left(x+y\right)-20=0\). Tính giá trị của: \(A=x^3+y^3+12xy\)
Đặt \(x+y=a\Leftrightarrow a-4=x+y-4\)
\(x^3+y^3-6\left(x^2+y^2\right)+13\left(x+y\right)-20=0\\ \Leftrightarrow\left(x+y\right)^3-6\left(x+y\right)^2+13\left(x+y\right)-20-3xy\left(x+y\right)+12xy=0\\ \Leftrightarrow a^3-6a^2+13a-20-3xy\left(x+y-4\right)=0\\ \Leftrightarrow a^3-4a^2-2a^2+8a+5a-20-3xy\left(a-4\right)=0\\ \Leftrightarrow\left(a-4\right)\left(a^2-2a+5\right)-3xy\left(a-4\right)=0\\ \Leftrightarrow\left(a-4\right)\left(a^2-2a+5-3xy\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}a=4\\a^2-2a+5-3xy=0\left(vô.n_0\right)\end{matrix}\right.\\ \Leftrightarrow x+y=4\)
\(\Leftrightarrow A=x^3+y^3+12xy=\left(x+y\right)^3-3xy\left(x+y\right)+12xy\\ A=4^3-3xy\left(x+y-4\right)=64-0=64\)
Tìm các số nguyên x,y thỏa mãn:6xy+4x-9y-7=0
Tìm giá trị nhỏ nhất của A=x^3+y^3+xy với x,y dương thỏa mãn x+y=1
Tìm các số nguyên x,y thỏa mãn 2x^2+1/x^2+y^2/4=4 sao cho xy đạt giá trị lớn nhất
HELP !
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Cho x và y là các số dương thỏa mãn: x+y=1. Tìm giá trị nhỏ nhất của : \(B=\dfrac{4}{x}+\dfrac{9}{y}\)
\(B=\dfrac{2^2}{x}+\dfrac{3^2}{y}\ge\dfrac{\left(2+3\right)^2}{x+y}=25\)
\(B_{min}=25\) khi \(\left(x;y\right)=\left(\dfrac{2}{5};\dfrac{3}{5}\right)\)
cho x và y là 2 số thực dương thỏa mãn: 3x+y≤4.
Tìm giá trị nhỏ nhất của A=1/x+1/√xy giúp mik với ạ=))
\(A=\dfrac{1}{x}+\dfrac{2}{2\sqrt{xy}}\ge\dfrac{1}{x}+\dfrac{2}{x+y}=2\left(\dfrac{1}{2x}+\dfrac{1}{x+y}\right)\ge2.\dfrac{4}{2x+x+y}=\dfrac{8}{3x+y}\ge\dfrac{8}{4}=2\)
Dấu "=" xảy ra khi \(x=y=1\)
cho x,y là các số nguyên dương thỏa mãn x+y=2017 tính giá trị nhỏ nhất .lớn nhất của biểu thức P=x(x^2+y)+y(y^2+x)