Những câu hỏi liên quan
TT
Xem chi tiết
NM
30 tháng 10 2021 lúc 20:55

\(1,\\ a,Gọi.ƯCLN\left(n,n+1\right)=d\\ \Rightarrow n⋮d;n+1⋮d\\ \Rightarrow n+1-n⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)

Vậy \(ƯCLN\left(n,n+1\right)=1\)

Bình luận (1)
TH
Xem chi tiết
H24
20 tháng 1 2022 lúc 16:26

2 số này không nguyên tố cùng nhau bạn xem lại đề

Bình luận (0)
H24
20 tháng 1 2022 lúc 16:31

- ILoveMath nói: '2 số này không nguyên tố cùng nhau...' là đúng vì khi n=6 thì 2.6+3=15 và 3.6+2=20 có ƯCLN là 5 nên sai nhé bạn :).

Bình luận (0)
MV
Xem chi tiết
ND
28 tháng 11 2016 lúc 20:02

Vì n \(\in\)N* => 2n + 3 \(\in\)N*

3n + 4 \(\in\)N*

Gọi d = ƯCLN(2n+3,3n+4)

=> (2n+3) \(⋮\)d và (3n+4) \(⋮\)d

=> [3(2n+3)] \(⋮\)d và [2(3n+4)] \(⋮\)d

=> (6n+9) \(⋮\)d và (6n+8) \(⋮\)d

=> [(6n+9) - (6n+8)] \(⋮\)d

=> (6n+9-6n-8) \(⋮\)d

=> [(6n-6n)+(9-8)] \(⋮\)d

=> 1 \(⋮\)d

=> d \(\in\)Ư(1)

=> d = 1

Vậy ƯCLN(2n+3,3n+4) = 1 với n \(\in\)N*

Bình luận (3)
TT
Xem chi tiết
TL
Xem chi tiết
NH
23 tháng 12 2022 lúc 10:28

loading...

Bình luận (1)
NL
Xem chi tiết
LE
Xem chi tiết
DT
2 tháng 12 2017 lúc 21:54

Gọi UCLN(2n+5,3n+7)là d(d\(\in N) \)

Ta có \(\begin{cases}2n+5 \vdots d \\3n+7 \vdots d \end{cases}\)<=>\(\begin{cases}6n+15 \vdots d \\6n+14 \vdots d \end{cases}\)

=> 6n+15-6n-14\(\vdots d\)

\(=> 1\vdots d \)

=> d \(\in Ư(1)=(1)\)

Vậy d=1

Bình luận (0)
NN
9 tháng 8 2018 lúc 8:09

Gọi d = ƯCLN ( 2n + 5 , 3n + 7 ) . ⇒ 2n + 5 ⋮ d ; 3n + 7 ⋮ d . ⇒ 3 * ( 2n + 5 ) ⋮ d ; 2 * ( 3n + 7 ) ⋮ d . ⇒ 6n + 15 ⋮ d ; 6n + 15 ⋮ d . ⇒ ( 6n + 15 ) - ( 6n + 15 ) ⋮ d . ⇒ 1 ⋮ d . ⇒ d ∈ Ư ( 1 ) = { -1 ; 1 } . Vì d lớn nhất nên d = 1 . Vậy bài toán được chứng minh .

Bình luận (0)
TA
Xem chi tiết
NM
15 tháng 12 2023 lúc 8:28

Gọi d là UC của 2n+1 và 7n+6 nên

\(2n+1⋮d\Rightarrow7\left(2n+1\right)=14n+7⋮d\)

\(7n+6⋮d\Rightarrow2\left(7n+6\right)=14n+12⋮d\)

\(\Rightarrow\left(14n+12\right)-\left(14n+7\right)=5⋮d\Rightarrow d=\left(-5;-1;1;5\right)\)

=> UCLN(2n+1;7n+6)=5

Bình luận (0)
NL
Xem chi tiết
PK
10 tháng 1 2020 lúc 19:24

Gọi ƯCLN(n+1;2n+1) là d.( d nguyên dương)

Có n+1 chia hết cho d, 2n+1 chia hết cho d nên (2n+1) - (n+1) chia hết cho d

Suy ra n chia hết cho d nên d là ƯC(n+1;n)
Mà ƯCLN(n;n+1)=1 nên d=1 suy ra n+1 và 2n+1 nguyên tố cùng nhau

Bình luận (0)
 Khách vãng lai đã xóa
NB
10 tháng 1 2020 lúc 19:25

Gọi d là ƯCLN(n+1,n+2)

=>n+1\(⋮\)d(1)

=>n+2\(⋮\)d(2)

Từ(1) và(2) suy ra(n+2)-(n+1)\(⋮\)d

                     =>n+2-n-1\(⋮\)d

                       =>1\(⋮\)d

                      =>d\(\in\)Ư(1)={1}

=>d=1

Vậy n+1 và n+2 nguyên tố cùng nhau

Chúc bn học tốt

Bình luận (0)
 Khách vãng lai đã xóa
PH
10 tháng 1 2020 lúc 19:41

Gọi ƯCLN(n+1,2n+1)=d

 n+1 chia hết cho d =>2(n+1) chia hết cho d =>2n+2 chia hết cho d

2n+1 chia hết cho d

=> 2n+2-(2n+1) chia hết cho d

=>1 chia hết cho d

=> d=1

=>n+1 và 2n+1 nguyên tố cùng nhau

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NA
27 tháng 12 2021 lúc 14:48

Vì 2n+1 và 7n+6 là 2 số nguyên tố cùng nhau

=> ƯCLN(2n+1;7n+6) = 1

Vậy ƯCLN của 2n+1 và 7n+6 là 1

_HT_

Bình luận (0)
 Khách vãng lai đã xóa