CM rằng ƯCLN(2n+1 ; 6n+4) =1 với n⊂ N
1. Chứng minh rằng
a) ƯCLN(n, n + 1) = 1
b) ƯCLN (2n + 1, 2n +3)= 1
c) ƯCLN(2n+5, 3n+7) = 1
Cho a + 5b 7. Chứng minh rằng 10a + b 7 (a,b )
giúp mk vớiiiiiiiiiii
nhớ giải ra ko lm tắt nhaaaaaaaaaaaaa
thanks very muck
\(1,\\ a,Gọi.ƯCLN\left(n,n+1\right)=d\\ \Rightarrow n⋮d;n+1⋮d\\ \Rightarrow n+1-n⋮d\\ \Rightarrow1⋮d\\ \Rightarrow d=1\)
Vậy \(ƯCLN\left(n,n+1\right)=1\)
Cho n €N*. Chứng minh rằng ƯCLN(2n+3,3n+2)=1
2 số này không nguyên tố cùng nhau bạn xem lại đề
- ILoveMath nói: '2 số này không nguyên tố cùng nhau...' là đúng vì khi n=6 thì 2.6+3=15 và 3.6+2=20 có ƯCLN là 5 nên sai nhé bạn :).
Chứng tỏ rằng: ƯCLN(2n+3,3n+4)=1 với n€N*
Vì n \(\in\)N* => 2n + 3 \(\in\)N*
3n + 4 \(\in\)N*
Gọi d = ƯCLN(2n+3,3n+4)
=> (2n+3) \(⋮\)d và (3n+4) \(⋮\)d
=> [3(2n+3)] \(⋮\)d và [2(3n+4)] \(⋮\)d
=> (6n+9) \(⋮\)d và (6n+8) \(⋮\)d
=> [(6n+9) - (6n+8)] \(⋮\)d
=> (6n+9-6n-8) \(⋮\)d
=> [(6n-6n)+(9-8)] \(⋮\)d
=> 1 \(⋮\)d
=> d \(\in\)Ư(1)
=> d = 1
Vậy ƯCLN(2n+3,3n+4) = 1 với n \(\in\)N*
Hãy chứng minh rằng:
A) ƯCLN (n+4; n+5)=1
B) ƯCLN (2n+5; n+2)=1
Nhanh nhanh nha!
Các bạn giúp mình với
a) Chứng minh rằng ƯCLN ( 5n+1; 6n+1 ) =1 ; n thuộc tập tự nhiên
b) Tìm ƯCLN (2n+1 ; 9n +6) ; n thuộc tập tự nhiên
MÌNH CẢM ƠN Ạ!!!
Biết rằng 2n+1 và 7n +6 (n e N) là hai số nguyên tố cùng nhau .Tim ƯCLN của 2n+1 và 7n+6
với mọi n thuộc N, chứng tỏ rằng: ƯCLN(2n+5, 3n+7)=1
Gọi UCLN(2n+5,3n+7)là d(d\(\in N) \)
Ta có \(\begin{cases}2n+5 \vdots d \\3n+7 \vdots d \end{cases}\)<=>\(\begin{cases}6n+15 \vdots d \\6n+14 \vdots d \end{cases}\)
=> 6n+15-6n-14\(\vdots d\)
\(=> 1\vdots d \)
=> d \(\in Ư(1)=(1)\)
Vậy d=1
Gọi d = ƯCLN ( 2n + 5 , 3n + 7 ) . ⇒ 2n + 5 ⋮ d ; 3n + 7 ⋮ d . ⇒ 3 * ( 2n + 5 ) ⋮ d ; 2 * ( 3n + 7 ) ⋮ d . ⇒ 6n + 15 ⋮ d ; 6n + 15 ⋮ d . ⇒ ( 6n + 15 ) - ( 6n + 15 ) ⋮ d . ⇒ 1 ⋮ d . ⇒ d ∈ Ư ( 1 ) = { -1 ; 1 } . Vì d lớn nhất nên d = 1 . Vậy bài toán được chứng minh .
biết rằng 2n+1 và 7n+6 là 2 số không nguyên tố cùng nhau. Tìm ƯCLN của chúng
Gọi d là UC của 2n+1 và 7n+6 nên
\(2n+1⋮d\Rightarrow7\left(2n+1\right)=14n+7⋮d\)
\(7n+6⋮d\Rightarrow2\left(7n+6\right)=14n+12⋮d\)
\(\Rightarrow\left(14n+12\right)-\left(14n+7\right)=5⋮d\Rightarrow d=\left(-5;-1;1;5\right)\)
=> UCLN(2n+1;7n+6)=5
Cho ƯCLN(n;n+1)=1. Chứng minh rằng n+1 và 2n+1 là 2 số nguyên tố cùng nhau
Gọi ƯCLN(n+1;2n+1) là d.( d nguyên dương)
Có n+1 chia hết cho d, 2n+1 chia hết cho d nên (2n+1) - (n+1) chia hết cho d
Suy ra n chia hết cho d nên d là ƯC(n+1;n)
Mà ƯCLN(n;n+1)=1 nên d=1 suy ra n+1 và 2n+1 nguyên tố cùng nhau
Gọi d là ƯCLN(n+1,n+2)
=>n+1\(⋮\)d(1)
=>n+2\(⋮\)d(2)
Từ(1) và(2) suy ra(n+2)-(n+1)\(⋮\)d
=>n+2-n-1\(⋮\)d
=>1\(⋮\)d
=>d\(\in\)Ư(1)={1}
=>d=1
Vậy n+1 và n+2 nguyên tố cùng nhau
Chúc bn học tốt
Gọi ƯCLN(n+1,2n+1)=d
n+1 chia hết cho d =>2(n+1) chia hết cho d =>2n+2 chia hết cho d
2n+1 chia hết cho d
=> 2n+2-(2n+1) chia hết cho d
=>1 chia hết cho d
=> d=1
=>n+1 và 2n+1 nguyên tố cùng nhau
biết rằng 2n+1 và 7n+6 (n thuộc N) là 2 số không nguyên tố cùng nhau. Tìm ƯCLN của 2n+1 và 7n+6
0
Vì 2n+1 và 7n+6 là 2 số nguyên tố cùng nhau
=> ƯCLN(2n+1;7n+6) = 1
Vậy ƯCLN của 2n+1 và 7n+6 là 1
_HT_