Tìm x, biết: 3x+1 - 8 . 3x = -405
Tìm x, biết:
2 . 3x - 405 = 3x-1
\(2\cdot3^x-405=3^{x-1}\\\Rightarrow2\cdot3^x-3^{x-1}=405\\\Rightarrow2\cdot3^x-3^x\cdot3^{-1}=405\\\Rightarrow3^x\cdot(2-3^{-1})=405\\\Rightarrow3^x\cdot(2-\frac13)=405\\\Rightarrow3^x\cdot\frac53=405\\\Rightarrow3^x=405:\frac53\\\Rightarrow3^x=243\\\Rightarrow3^x=3^5\\\Rightarrow x=5\)
tìm x, biết:
a. 2 . 3x - 405 = 3^x - 1
b.(1/81)^x . 27^2x = (-9)^4
3^2x-1+2.9x-1=405
3/5.(3x^3-8/9)-1/2.(3/2-1)=-1/4
\(\left(\dfrac{1}{3}\right)^{x-1}+5.\left(\dfrac{1}{3}\right)^{x+1}=\dfrac{14}{9^3}\)
tìm x ( giúp với mình cần gấp )
Tìm a trong khai triển ( 1 + a x ) ( 1 - 3 x ) 6 , biết hệ số của số hạng chứa x 3 là 405
A. 3
B. 7
C. -3
D. -7
Số hạng tổng quát trong khai triển 1 + a x 1 − 3 x 6 là 1 + a x C 6 k . − 3 x k .
Hệ số chứa x 3 trong khai triển là
C 6 3 . − 3 3 + a . C 6 2 . − 3 2 = − 540 + 135 a ⇒ a = 7
Chọn A
\(3^{2x-1}+2.9^{x-1}=405\)
\(\left(\dfrac{1}{3}\right)^{x-1}+5.\left(\dfrac{1}{3}\right)^{x+1}=\dfrac{14}{9^3}\)
\(\dfrac{3}{5}.\left(3x^3-\dfrac{8}{9}\right)-\dfrac{1}{2}.\left(\dfrac{3}{2}-1\right)=-\dfrac{1}{4}\)
Tìm x ( Giúp với mình cần gấp )
Để giải phương trình, ta sẽ thực hiện các bước sau: Bước 1: Giải các phép tính trong phương trình. 32x^(-1) + 2.9x^(-1) = 405(13)^(-1) + 5.(13)^2 + 1 = 1493(31)^(-1) + 5.(31)^2 + 1 = 9314(35)^(-1) Bước 2: Rút gọn các số hạng. 32x^(-1) + 2.9x^(-1) = 405/13 + 5.(13)^2 + 1 = 1493/31 + 5.(31)^2 + 1 = 9314/35 Bước 3: Đưa các số hạng về cùng mẫu số. 32x^(-1) + 2.9x^(-1) = (405/13).(31/31) + 5.(13)^2 + 1 = (1493/31).(13/13) + 5.(31)^2 + 1 = 9314/35 Bước 4: Tính toán các số hạng. 32x^(-1) + 2.9x^(-1) = 405.(31)/13.(31) + 5.(13)^2 + 1 = 1493.(13)/31.(13) + 5.(31)^2 + 1 = 9314/35 Bước 5: Tính tổng các số hạng. 32x^(-1) + 2.9x^(-1) = 405.(31)/403 + 5.(13)^2 + 1 = 1493.(13)/403 + 5.(31)^2 + 1 = 9314/35 Bước 6: Đưa phương trình về dạng chuẩn. 32x^(-1) + 2.9x^(-1) - 9314/35 = 0 Bước 7: Giải phương trình. Để giải phương trình này, ta cần biến đổi nó về dạng tương đương. Nhân cả hai vế của phương trình với 35 để loại bỏ mẫu số. 35.(32x^(-1) + 2.9x^(-1) - 9314/35) = 0 1120x^(-1) + 101.5x^(-1) - 9314 = 0 Bước 8: Tìm giá trị của x. Để tìm giá trị của x, ta cần giải phương trình này. Tuy nhiên, phương trình này không thể giải được vì x có mũ là -1.
còn bài này thì sao bạn
tìm x, biết 3x / 2*5 + 3x / 5*8 +3x /8*11 +3x / 11*14 = 1/21
\(\frac{3x}{2.5}+\frac{3x}{5.8}+\frac{3x}{8.11}+\frac{3x}{11.14}=\frac{1}{21}\)
=> \(x\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}\right)=\frac{1}{21}\)
=> \(x\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\right)=\frac{1}{21}\)
=> \(x\left(\frac{1}{2}-\frac{1}{14}\right)=\frac{1}{21}\)
=> \(x.\frac{3}{7}=21\)
=> x = 49
Vậy x = 49
Xin lỗi bạn nhé x = 1/9 bước cuối mình ghi sót
sai rồi bạn ơi
Cho khai triển ( 1 + a x ) ( 1 - 3 x ) 6 , biết hệ số của số hành chứa x 3 là 405
Tính tổng các hệ số của P(x).
A. 0
B. 5
C. 7920
D. 7936
Chọn D
Với x=1 có P(1)= 28+29+210+211+212=7936
Suy ra ao+ a1+a2+…+an=P(1) = 7936
Tìm x biết
1. 2(5x-8)-3(4x-5)=4(3x-4)+11
2. (2x+1)2-(4x-1).(x-3)-15=0
3. (3x-1).(2x-7)-(1-3x).(6x-5)=0
1) \(\Rightarrow10x-16-12x+15=12x-16+11\)
\(\Rightarrow14x=4\Rightarrow x=\dfrac{2}{7}\)
2) \(\Rightarrow4x^2+4x+1-4x^2+13x-3-15=0\)
\(\Rightarrow17x=17\Rightarrow x=1\)
3) \(\Rightarrow\left(3x-1\right)\left(2x-7+6x-5\right)=0\)
\(\Rightarrow\left(2x-3\right)\left(3x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
2: Ta có: \(\left(2x+1\right)^2-\left(4x-1\right)\left(x-3\right)-15=0\)
\(\Leftrightarrow4x^2+4x+1-4x^2+12x+x-3-15=0\)
\(\Leftrightarrow17x=17\)
hay x=1
Tìm x, biết: (3x-5)2-(3x+1)2=8
(3x-5)2-(3x+1)2=8
<=>(9x2-30x+25)-(9x2+6x+1)=8
<=>9x2-30x+25-9x2-6x-1=8
<=>-36x+24=8
<=>-36x=-16
<=>x=4/9
Bài 1: Tìm x biết a) x^3 - 4x^2 - x + 4= 0 b) x^3 - 3x^2 + 3x + 1=0 c) x^3 + 3x^2 - 4x - 12=0 d) (x-2)^2 - 4x +8 =0
a: \(x^3-4x^2-x+4=0\)
=>\(\left(x^3-4x^2\right)-\left(x-4\right)=0\)
=>\(x^2\left(x-4\right)-\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(x^2-1\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\x^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x^2=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;1;-1\right\}\)
b: Sửa đề: \(x^3+3x^2+3x+1=0\)
=>\(x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=0\)
=>\(\left(x+1\right)^3=0\)
=>x+1=0
=>x=-1
c: \(x^3+3x^2-4x-12=0\)
=>\(\left(x^3+3x^2\right)-\left(4x+12\right)=0\)
=>\(x^2\cdot\left(x+3\right)-4\left(x+3\right)=0\)
=>\(\left(x+3\right)\left(x^2-4\right)=0\)
=>\(\left(x+3\right)\left(x-2\right)\left(x+2\right)=0\)
=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)
d: \(\left(x-2\right)^2-4x+8=0\)
=>\(\left(x-2\right)^2-\left(4x-8\right)=0\)
=>\(\left(x-2\right)^2-4\left(x-2\right)=0\)
=>\(\left(x-2\right)\left(x-2-4\right)=0\)
=>(x-2)(x-6)=0
=>\(\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)