Ẩn danh

Những câu hỏi liên quan
H24
Xem chi tiết
H24
16 tháng 12 2023 lúc 23:20

\(2\cdot3^x-405=3^{x-1}\\\Rightarrow2\cdot3^x-3^{x-1}=405\\\Rightarrow2\cdot3^x-3^x\cdot3^{-1}=405\\\Rightarrow3^x\cdot(2-3^{-1})=405\\\Rightarrow3^x\cdot(2-\frac13)=405\\\Rightarrow3^x\cdot\frac53=405\\\Rightarrow3^x=405:\frac53\\\Rightarrow3^x=243\\\Rightarrow3^x=3^5\\\Rightarrow x=5\)

Bình luận (0)
PA
Xem chi tiết
HK
Xem chi tiết
PB
Xem chi tiết
CT
29 tháng 7 2018 lúc 11:44

Số hạng tổng quát trong khai triển 1 + a x 1 − 3 x 6  là 1 + a x C 6 k . − 3 x k .

Hệ số chứa x 3  trong khai triển là

C 6 3 . − 3 3 + a . C 6 2 . − 3 2 = − 540 + 135 a ⇒ a = 7

Chọn A

Bình luận (0)
HK
Xem chi tiết
YN
4 tháng 7 2023 lúc 20:42

Để giải phương trình, ta sẽ thực hiện các bước sau: Bước 1: Giải các phép tính trong phương trình. 32x^(-1) + 2.9x^(-1) = 405(13)^(-1) + 5.(13)^2 + 1 = 1493(31)^(-1) + 5.(31)^2 + 1 = 9314(35)^(-1) Bước 2: Rút gọn các số hạng. 32x^(-1) + 2.9x^(-1) = 405/13 + 5.(13)^2 + 1 = 1493/31 + 5.(31)^2 + 1 = 9314/35 Bước 3: Đưa các số hạng về cùng mẫu số. 32x^(-1) + 2.9x^(-1) = (405/13).(31/31) + 5.(13)^2 + 1 = (1493/31).(13/13) + 5.(31)^2 + 1 = 9314/35 Bước 4: Tính toán các số hạng. 32x^(-1) + 2.9x^(-1) = 405.(31)/13.(31) + 5.(13)^2 + 1 = 1493.(13)/31.(13) + 5.(31)^2 + 1 = 9314/35 Bước 5: Tính tổng các số hạng. 32x^(-1) + 2.9x^(-1) = 405.(31)/403 + 5.(13)^2 + 1 = 1493.(13)/403 + 5.(31)^2 + 1 = 9314/35 Bước 6: Đưa phương trình về dạng chuẩn. 32x^(-1) + 2.9x^(-1) - 9314/35 = 0 Bước 7: Giải phương trình. Để giải phương trình này, ta cần biến đổi nó về dạng tương đương. Nhân cả hai vế của phương trình với 35 để loại bỏ mẫu số. 35.(32x^(-1) + 2.9x^(-1) - 9314/35) = 0 1120x^(-1) + 101.5x^(-1) - 9314 = 0 Bước 8: Tìm giá trị của x. Để tìm giá trị của x, ta cần giải phương trình này. Tuy nhiên, phương trình này không thể giải được vì x có mũ là -1.

Bình luận (0)
NH
Xem chi tiết
XO
9 tháng 5 2021 lúc 20:04

\(\frac{3x}{2.5}+\frac{3x}{5.8}+\frac{3x}{8.11}+\frac{3x}{11.14}=\frac{1}{21}\)

=> \(x\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}\right)=\frac{1}{21}\)

=> \(x\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}\right)=\frac{1}{21}\)

=> \(x\left(\frac{1}{2}-\frac{1}{14}\right)=\frac{1}{21}\)

=> \(x.\frac{3}{7}=21\)

=> x = 49 

Vậy x = 49

Bình luận (0)
 Khách vãng lai đã xóa
XO
9 tháng 5 2021 lúc 20:15

Xin lỗi bạn nhé x = 1/9 bước cuối mình ghi sót 

Bình luận (0)
 Khách vãng lai đã xóa
NH
9 tháng 5 2021 lúc 20:12

sai rồi bạn ơi

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
3 tháng 5 2017 lúc 7:33

Chọn D

Với x=1 có P(1)= 28+29+210+211+212=7936

Suy ra ao+ a1+a2+…+an=P(1) = 7936

Bình luận (0)
TT
Xem chi tiết
LL
14 tháng 10 2021 lúc 22:43

1) \(\Rightarrow10x-16-12x+15=12x-16+11\)

\(\Rightarrow14x=4\Rightarrow x=\dfrac{2}{7}\)

2) \(\Rightarrow4x^2+4x+1-4x^2+13x-3-15=0\)

\(\Rightarrow17x=17\Rightarrow x=1\)

3) \(\Rightarrow\left(3x-1\right)\left(2x-7+6x-5\right)=0\)

\(\Rightarrow\left(2x-3\right)\left(3x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)

Bình luận (1)
NT
14 tháng 10 2021 lúc 22:48

2: Ta có: \(\left(2x+1\right)^2-\left(4x-1\right)\left(x-3\right)-15=0\)

\(\Leftrightarrow4x^2+4x+1-4x^2+12x+x-3-15=0\)

\(\Leftrightarrow17x=17\)

hay x=1

Bình luận (0)
NL
Xem chi tiết
MT
29 tháng 7 2015 lúc 14:37

 

(3x-5)2-(3x+1)2=8

<=>(9x2-30x+25)-(9x2+6x+1)=8

<=>9x2-30x+25-9x2-6x-1=8

<=>-36x+24=8

<=>-36x=-16

<=>x=4/9

Bình luận (0)
NN
Xem chi tiết
NT
29 tháng 11 2023 lúc 5:45

a: \(x^3-4x^2-x+4=0\)

=>\(\left(x^3-4x^2\right)-\left(x-4\right)=0\)

=>\(x^2\left(x-4\right)-\left(x-4\right)=0\)

=>\(\left(x-4\right)\left(x^2-1\right)=0\)

=>\(\left[{}\begin{matrix}x-4=0\\x^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x^2=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;1;-1\right\}\)

b: Sửa đề: \(x^3+3x^2+3x+1=0\)

=>\(x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=0\)

=>\(\left(x+1\right)^3=0\)

=>x+1=0

=>x=-1

c: \(x^3+3x^2-4x-12=0\)

=>\(\left(x^3+3x^2\right)-\left(4x+12\right)=0\)

=>\(x^2\cdot\left(x+3\right)-4\left(x+3\right)=0\)

=>\(\left(x+3\right)\left(x^2-4\right)=0\)

=>\(\left(x+3\right)\left(x-2\right)\left(x+2\right)=0\)

=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)

d: \(\left(x-2\right)^2-4x+8=0\)

=>\(\left(x-2\right)^2-\left(4x-8\right)=0\)

=>\(\left(x-2\right)^2-4\left(x-2\right)=0\)

=>\(\left(x-2\right)\left(x-2-4\right)=0\)

=>(x-2)(x-6)=0

=>\(\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

 

Bình luận (0)