Những câu hỏi liên quan
KY
Xem chi tiết
NT
14 tháng 3 2023 lúc 10:17

a: ΔEAD cân tại E

=>góc EAD=góc EDA=(180-108)/2=36 độ

ΔBAC cân tại B

=>góc BAC=góc BCA=(180-108)/2=36 độ

=>góc DAC=108-36-36=36 độ

=>góc EAD=góc DAC=góc CAB

b: góc CAE=36+36=72 độ

=>góc CAE+góc AED=180 độ

=>AC//ED

=>ED//AF

góc ABD+góc BAE=180 độ

=>AE//BF

=>AE//DF

mà ED//AF

và AE=ED

nên AEDF là hình thoi

Bình luận (0)
KY
Xem chi tiết
NT
14 tháng 3 2023 lúc 10:17

a: ΔEAD cân tại E

=>góc EAD=góc EDA=(180-108)/2=36 độ

ΔBAC cân tại B

=>góc BAC=góc BCA=(180-108)/2=36 độ

=>góc DAC=108-36-36=36 độ

=>góc EAD=góc DAC=góc CAB

b: góc CAE=36+36=72 độ

=>góc CAE+góc AED=180 độ

=>AC//ED

=>ED//AF

góc ABD+góc BAE=180 độ

=>AE//BF

=>AE//DF

mà ED//AF

và AE=ED

nên AEDF là hình thoi

Bình luận (0)
TK
Xem chi tiết
LC
Xem chi tiết
HP
18 tháng 11 2016 lúc 21:22

Dễ thấy AB=BC=CD=DE

\(ABC\ge CDE=>AC\ge CE\)

Tam giác ACE có \(AC\ge CE=>AEC\ge CAE\left(1\right)\)

\(ABC\ge CDE=>\frac{180^0-B}{2}\le\frac{180^0-D}{2}=>BAC\le CED=>CED\ge BAC\left(2\right)\)

Cộng theo vế (1) và (2)

\(AEC+CED\ge CAE+BAC=>E\ge A,mà.E\le A=>E=A\)

Vậy \(A=B=C=D=E\),mà ngũ giác ABCDE có các cạnh = nhau nên là ngũ giác đều

Bình luận (0)
H24
Xem chi tiết
LC
Xem chi tiết
DH
Xem chi tiết
H24
12 tháng 3 2020 lúc 14:20

cj kham khảo

a) Nối AC; AD

Ngũ giác ABCDE được chia thành 3 tam giác: ΔABC, ΔACD, ΔADE. Tổng các góc trong của mỗi tam giác bằng 1800

Tổng các góc trong của ngũ giác ABCDE là 1800. 3 = 5400

b) Vì ABCDE là ngũ giác đều nên

\(\widehat{A}=\widehat{B}=\widehat{C}=\widehat{D}=\widehat{E}=\frac{540^0}{5}=108^0\)

Mặt khác ΔABC cân tại B nên 

\(\widehat{BAC}+\widehat{BCA}=\frac{180^0-108^0}{2}=36^0\)

\(\Rightarrow\widehat{CAE}=\widehat{ACD}=108^0-36^0=72^0\)

\(\Rightarrow\widehat{EDC}+\widehat{ADC}=108^0+72^2=180^0\)

Suy ra ED // AC hay ED // CF.

Chứng minh tương tự ta có EF // CD

Mặt khác ED = DC (gt)

nên tứ giác CEFD là hình thoi.

Bình luận (0)
 Khách vãng lai đã xóa
AN
Xem chi tiết
TD
3 tháng 9 2019 lúc 20:54

A B C D E 1 2 1 2 K

Giải:

Góc của ngũ giác đều là \(\frac{\left(5-2\right).180^0}{5}=108^0\)

Xét \(\Delta ABC\)cân tại B có \(\widehat{ABC}=108^0\Rightarrow\widehat{A_1}=\widehat{C_1}=\frac{180^0-108^0}{2}=36^0\)

Do đó: \(\widehat{A_2}=\widehat{C_2}=108^0-36^0=72^0\)

Ta có: \(\widehat{C_2}+\widehat{D}=72^0+108^0=180^0\)mà 2 góc này ở vị trí trong cùng phía nên AC // DE.

Chứng minh tương tự như trên, BE // CD. Do đó CKED là hình bình hành.

Mà CD=DE nên CKED là hình thoi.

Mình làm mệt quá, k mk nha!

Bình luận (0)
H24
Xem chi tiết