Những câu hỏi liên quan
H24
Xem chi tiết
NA
Xem chi tiết
XO
16 tháng 8 2020 lúc 9:13

A) Ta có S = 1.2 + 2.3 + 3.4 + ... + 99.100

=> 3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3

=> 3S = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + .... + 99.100.(101 - 98)

=> 3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 99.100.101 - 98.99.100

=> 3S = 99.100.101

=> 3S =  999900

=> S = 333300

b) Để A đạt giá trị nhỏ nhất

=> (x - 1)2 nhỏ nhất 

mà \(\left(x-1\right)^2\ge0\forall x\)

=> (x - 1)2 = 0 là giá trị nhỏ nhất của (x - 1)2

=> x - 1 = 0

=> x = 1

Vậy khi x = 1 thì A đạt giá trị nhỏ nhất

Để |x + 4| + 1996 đạt giá trị nhỏ nhất

=> |x + 4| nhỏ nhất

mà \(\left|x+4\right|\ge0\forall x\)

=> Giá trị nhỏ nhất của |x + 4| khi |x + 4| = 0

=> x + 4 = 0

=. x = -4

Vậy khi x = -4 thì B đạt GTNN

Bình luận (0)
 Khách vãng lai đã xóa
NP
Xem chi tiết
SK
Xem chi tiết
MC
23 tháng 6 2017 lúc 16:03

a) A = \(\dfrac{1^2}{1.2}.\dfrac{2^2}{2.3}.\dfrac{3^2}{3.4}.\dfrac{4^2}{4.5}\)

A = \(\dfrac{1.1}{1.2}.\dfrac{2.2}{2.3}.\dfrac{3.3}{3.4}.\dfrac{4.4}{4.5}\)

A = \(\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}\)= \(\dfrac{1}{5}\)

b) B = \(\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.\dfrac{5^2}{4.6}\)

B = \(\dfrac{2.3.4.5}{1.2.3.4}.\dfrac{2.3.4.5}{3.4.5.6}\)= \(\dfrac{5}{3}\)

Bình luận (0)
LT
Xem chi tiết
KL
28 tháng 12 2015 lúc 17:42

2/1.2+2/2.3+2/3.4+...+2/x(x+1)=4028/2015

2(1/1.2+1/2.3+1/3.4+...+1/x(x+1))=4028/2015

2(1/1-1/2+1/2-1/3+1/3-1/4+....+1/x-1/x+1)=4028/2015

2(1-1/x+1)=4028/2015

1-1/x+1=2014/2015

(x+1-1)/x+1=2014/2015

x/x+1=2014/2015

(x+1).2014=2015x

2014x-2015x=-2014

-x=-2014

x=2014

Bình luận (0)
NT
Xem chi tiết
NT
8 tháng 1 2021 lúc 22:17

Bài 1: 

a) Ta có: \(\dfrac{7^4\cdot3-7^3}{7^4\cdot6-7^3\cdot2}\)

\(=\dfrac{7^3\cdot\left(7\cdot3-1\right)}{7^3\cdot2\left(7\cdot3-1\right)}\)

\(=\dfrac{1}{2}\)

c) Ta có: \(E=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\)

\(\Leftrightarrow\dfrac{1}{3}\cdot E=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{101}}\)

\(\Leftrightarrow E-\dfrac{1}{3}\cdot E=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{101}}\right)\)

\(\Leftrightarrow E\cdot\dfrac{2}{3}=1-\dfrac{1}{3^{101}}\)

\(\Leftrightarrow E=\dfrac{3-\dfrac{3}{3^{101}}}{2}=\dfrac{1-\dfrac{1}{3^{100}}}{2}\)

Bình luận (1)
NA
Xem chi tiết
TC
5 tháng 5 2022 lúc 20:33

bài 2:

\(A=9.\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)

\(A=9.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(A=9.\left(1-\dfrac{1}{100}\right)=9.\left(\dfrac{100}{100}-\dfrac{1}{100}\right)=\dfrac{891}{100}\)

bài 3:

\(=>\dfrac{x}{3}=\dfrac{5}{8}+\dfrac{1}{8}=\dfrac{8}{8}=1=\dfrac{3}{3}\)

\(=>x=3\)

Bình luận (0)
TT
Xem chi tiết
TT
6 tháng 5 2019 lúc 18:20

Chỗ 4 mũ 2/3.5 x ... x 59 mũ 2/58.60 nha

Bình luận (0)
NA
6 tháng 5 2019 lúc 18:22

a, Ta có : \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)

                                                                                   \(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)

=> \(\frac{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{199.200}}{\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}}=1\)

=> đpcm

Study well ! >_<

Bình luận (0)
LA
Xem chi tiết
NU
22 tháng 3 2018 lúc 20:30

hình như là 32 chứ k f 33

\(B=\frac{1^2}{1\cdot2}\cdot\frac{2^2}{2\cdot3}\cdot\frac{3^2}{3\cdot4}\cdot\frac{4^2}{4\cdot5}\)

\(B=\frac{\left(1\cdot1\right)\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)}{\left(1\cdot2\right)\left(2\cdot3\right)\left(3\cdot4\right)\left(4\cdot5\right)}\)

\(B=\frac{\left(1\cdot2\cdot3\cdot4\right)\left(1\cdot2\cdot3\cdot4\right)}{\left(1\cdot2\cdot3\cdot4\right)\left(2\cdot3\cdot4\cdot5\right)}\)

\(=\frac{1}{5}\)

Bình luận (0)
HM
22 tháng 3 2018 lúc 20:33

\(B=\frac{1^2}{1\cdot2}\cdot\frac{2^2}{2\cdot3}\cdot\frac{3^2}{3\cdot4}\cdot\frac{4^2}{4\cdot5}\)

\(B=\frac{1^2\cdot2^2\cdot3^2\cdot4^2}{1\cdot2\cdot2\cdot3\cdot3\cdot4\cdot4\cdot5}\)

\(B=\frac{1^2\cdot2^2\cdot3^2\cdot4^2}{1^2\cdot2^2\cdot3^2\cdot4^2\cdot5}=\frac{1}{5}\)

Bình luận (0)