Những câu hỏi liên quan
LA
Xem chi tiết
BM
11 tháng 10 2023 lúc 18:58

https://edward29.github.io/surprise/

Bình luận (0)
LT
Xem chi tiết
DD
1 tháng 2 2020 lúc 20:25

a) (x-y)(x4+x3y+x2y2+xy3+y4) = x(x4+x3y+x2y2+xy3+y4)-y(x4+x3y+x2y2+xy3+y4) =(x5+x4y+x3y2+x2y2+xy4)-(x4y+x3y2+x2y2+xy4+y5) = x5+x4y+x3y2+x2y2+xy4-x4y-x3y2-x2y2-xy4-y5 =x5-y5⇒Điều cần chứng minh

Các câu b d tương tự

Bình luận (0)
 Khách vãng lai đã xóa
TV
Xem chi tiết
NN
23 tháng 11 2023 lúc 21:05

a) Để tính giá trị của biểu thức x^4 + y^4, ta có thể sử dụng công thức Newton về tổng lũy thừa của một đa thức. Theo công thức Newton, ta có: x^4 + y^4 = (x^2 + y^2)^2 - 2x^2y^2 Từ đó, ta có thể tính giá trị của biểu thức x^4 + y^4 theo a và b: x^4 + y^4 = (a^2 - 2b)^2 - 2(a - 2b)b b) Tương tự, để tính giá trị của biểu thức x^5 + y^5, ta có thể sử dụng công thức Newton về tổng lũy thừa của một đa thức. Theo công thức Newton, ta có: x^5 + y^5 = (x + y)(x^4 - x^3y + x^2y^2 - xy^3 + y^4) Từ đó, ta có thể tính giá trị của biểu thức x^5 + y^5 theo a và b: x^5 + y^5 = (a)(a^4 - a^3b + a^2b^2 - ab^3 + b^4)

Bình luận (0)
NN
23 tháng 11 2023 lúc 21:21

ccc

Bình luận (0)
H24
Xem chi tiết
NT
28 tháng 8 2021 lúc 21:16

a: \(A=x^2+y^2=\left(x+y\right)^2-2xy=15^2-2\cdot50=115\)

c: \(x-y=\sqrt{\left(x+y\right)^2-4xy}=\sqrt{15^2-4\cdot50}=5\)

\(C=x^2-y^2=\left(x+y\right)\left(x-y\right)=15\cdot5=75\)

Bình luận (0)
DD
Xem chi tiết
H24
Xem chi tiết
NT
29 tháng 8 2021 lúc 21:08

a: \(x^2+y^2=\left(x-y\right)^2+2xy=15^2+2\cdot50=325\)

b: \(x+y=\sqrt{\left(x-y\right)^2+4xy}=\sqrt{15^2+4\cdot50}=5\sqrt{17}\)

\(x^2-y^2=\left(x-y\right)\left(x+y\right)=5\sqrt{17}\cdot15=75\sqrt{17}\)

\(x^4-y^4=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=75\sqrt{17}\cdot325=24375\sqrt{17}\)

 

Bình luận (0)
MM
Xem chi tiết
NT
29 tháng 8 2021 lúc 20:41

a: \(A=x^2+y^2=\left(x+y\right)^2-2xy=15^2-2\cdot50=125\)

b:\(B=x^4+y^4\)

\(=\left(x^2+y^2\right)^2-2x^2y^2\)

\(=125^2-2\cdot2500\)

=10625

c:  \(x-y=\sqrt{\left(x+y\right)^2-4xy}=\sqrt{15^2-4\cdot50}=5\)

\(C=x^2-y^2=\left(x-y\right)\left(x+y\right)=15\cdot5=75\)

Bình luận (0)
TN
Xem chi tiết
H24
25 tháng 10 2023 lúc 17:57

Ta có:

$x+y=12$

$\Leftrightarrow (x+y)^2=12^2$

$\Leftrightarrow x^2+2xy+y^2=144$

$\Leftrightarrow x^2+2\cdot 32+y^2=144$ (vì $xy=32$)

$\Leftrightarrow x^2+y^2+64=144$

$\Leftrightarrow x^2+y^2=80$

Lại có: 

$x^4+y^4$

$=(x^2)^2+2x^2y^2+(y^2)^2-2x^2y^2$

$=(x^2+y^2)^2-2\cdot(xy)^2$

$=80^2-2\cdot 32^2$ (vì $x^2+y^2=80$; $xy=32$)

$=6400-2048$

$=4352$

Bình luận (0)
DD
Xem chi tiết
NL
1 tháng 3 2022 lúc 17:26

\(P=\left(x^4+y^4+\dfrac{1}{256}+\dfrac{255}{256}\right)\left(\dfrac{1}{x^4}+\dfrac{1}{y^4}+1\right)\)

\(P=\left(x^4+y^4+\dfrac{1}{256}\right)\left(\dfrac{1}{x^4}+\dfrac{1}{y^4}+1\right)+\dfrac{255}{256}\left(\dfrac{1}{x^4}+\dfrac{1}{y^4}+1\right)\)

\(P\ge\left(\dfrac{x^2}{x^2}+\dfrac{y^2}{y^2}+\dfrac{1}{16}\right)^2+\dfrac{255}{256}\left(\dfrac{1}{2}\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)^2+1\right)\)

\(P\ge\left(\dfrac{33}{16}\right)^2+\dfrac{255}{256}\left(\dfrac{1}{2}\left(\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\right)^2+1\right)\)

\(P\ge\left(\dfrac{33}{16}\right)^2+\dfrac{255}{256}\left(\dfrac{1}{8}\left(\dfrac{4}{x+y}\right)^4+1\right)\ge\left(\dfrac{33}{16}\right)^2+\dfrac{255}{256}\left(\dfrac{4^4}{8}+1\right)=\dfrac{297}{8}\)

\(P_{min}=\dfrac{297}{8}\) khi \(x=y=\dfrac{1}{2}\)

Bình luận (0)
NK
Xem chi tiết
ML
3 tháng 8 2023 lúc 17:47

\(\left\{{}\begin{matrix}x-y=4\\xy=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y+4\\y\left(y+4\right)=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y+4\\y^2+4y-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=y+4\\\left[{}\begin{matrix}y=-2+\sqrt{5}\\y=-2-\sqrt{5}\end{matrix}\right.\end{matrix}\right.\)

Với \(y=-2+\sqrt{5}\Rightarrow x=2+\sqrt{5}\)

Với \(y=-2-\sqrt{5}\Rightarrow x=2-\sqrt{5}\)

\(\Rightarrow A=x^2+y^2=\left(-2+\sqrt{5}\right)^2+\left(2+\sqrt{5}\right)^2=\left(2-\sqrt{5}\right)^2+\left(-2-\sqrt{5}\right)^2=18\)

\(B=x^3+y^3\Rightarrow\left[{}\begin{matrix}B=\left(2+\sqrt{5}\right)^3+\left(-2+\sqrt{5}\right)^3=34\sqrt{5}\\B=\left(2-\sqrt{5}\right)^3+\left(-2-\sqrt{5}\right)^3=-34\sqrt{5}\end{matrix}\right.\)

\(\Rightarrow C=x^4+y^4=\left(-2+\sqrt{5}\right)^4+\left(2+\sqrt{5}\right)^4=\left(2-\sqrt{5}\right)^4+\left(-2-\sqrt{5}\right)^4=322\)

Bình luận (0)