Tìm giá trị lớn nhất của:
a) x^2-xy+y^2/x^2+xy+y^2
B) x/(x+2000)^2
C)x^2-xy+y^2/x^2-2xy+y^2
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho x,y dương thỏa mãn : \(xy+1\le y\).Tìm giá trị nhỏ nhất của biểu thức :
\(Q=\dfrac{x^2-2xy+2y^2}{xy+y^2}\)
\(y\ge xy+1\ge2\sqrt{xy}\Rightarrow\sqrt{\dfrac{y}{x}}\ge2\Rightarrow\dfrac{y}{x}\ge4\)
\(Q=\dfrac{1-\dfrac{2y}{x}+2\left(\dfrac{y}{x}\right)^2}{\dfrac{y}{x}+\left(\dfrac{y}{x}\right)^2}\)
Đặt \(\dfrac{y}{x}=a\ge4\)
\(Q=\dfrac{2a^2-2a+1}{a^2+a}=\dfrac{2a^2-2a+1}{a^2+a}-\dfrac{5}{4}+\dfrac{5}{4}=\dfrac{\left(a-4\right)\left(3a-1\right)}{4\left(a^2+1\right)}+\dfrac{5}{4}\ge\dfrac{5}{4}\)
\(Q_{min}=\dfrac{5}{4}\) khi \(a=4\) hay \(\left(x;y\right)=\left(\dfrac{1}{2};2\right)\)
Bài 1:Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=x^2+y^2/x^2+xy+4y^2 với x2+xy+4y^2 khác 0.Bài 2:Với x;y thỏa mãn điều kiện x^2+y^2=1.Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=2(xy+y^2)/1+2x^2+2xy.Giúp mik nhé mai mik đi hc r
tìm giá trị lớn nhất của \(A=\frac{x^2+xy+y^2}{x^2-xy+y^2}\)với x, y > 0
Tìm x,y thuộc Z
a)49-y^2=6(x-2021)^2
b)x^2 + xy + y^2=2x+y
c)x^2 + xy + y^2=x+y
d)x^2 + 3xy + 3y^2 =3y
e)x^2 - 2xy - 5y^2=y+1
Tìm x,y thuộc Z
a)49-y^2=6(x-2021)^2
b)x^2 + xy + y^2=2x+y
c)x^2 + xy + y^2=x+y
d)x^2 + 3xy + 3y^2 =3y
e)x^2 - 2xy - 5y^2=y+1
Tìm x,y thuộc Z
a)49-y^2=6(x-2021)^2
b)x^2 + xy + y^2=2x+y
c)x^2 + xy + y^2=x+y
d)x^2 + 3xy + 3y^2 =3y
e)x^2 - 2xy - 5y^2=y+1
Tìm x,y thuộc Z
a)49-y^2=6(x-2021)^2
b)x^2 + xy + y^2=2x+y
c)x^2 + xy + y^2=x+y
d)x^2 + 3xy + 3y^2 =3y
e)x^2 - 2xy - 5y^2=y+1
Tìm x,y thuộc Z
a)49-y^2=6(x-2021)^2
b)x^2 + xy + y^2=2x+y
c)x^2 + xy + y^2=x+y
d)x^2 + 3xy + 3y^2 =3y
e)x^2 - 2xy - 5y^2=y+1
Tìm x,y thuộc Z
a)49-y^2=6(x-2021)^2
b)x^2 + xy + y^2=2x+y
c)x^2 + xy + y^2=x+y
d)x^2 + 3xy + 3y^2 =3y
e)x^2 - 2xy - 5y^2=y+1