Ẩn danh

Những câu hỏi liên quan
GH
Xem chi tiết
HT
Xem chi tiết
XX
25 tháng 4 2022 lúc 21:51
  
  
  

Mi xịp màu gì

Bình luận (1)
H24
Xem chi tiết

Gọi N là trung điểm của BH

=> MN là đường trung bình của tam giác ABH

=>MN//AB, MN=\(\dfrac{1}{2}\) AB

Mà AB=CD và AB//CD

=>MN//CD, MN = \(\dfrac{1}{2}\) CD

=> MNCK là hình bình hành ( Dấu hiệu nhận biết ) 

=> NC//MK (1)

Ta có: MN //AB

AB vuông góc với BC

=> MN vuông góc với BC tại E (\(E\in BC\))

Tam giác BCM có BH và ME là đường cao và chúng cắt nhau tại N

=> CN vuông góc với BM (2)

Từ (1) và (2) suy ra:

BM vuông góc với MK hay góc BMK = 90o (đpcm)

Bình luận (0)
HN
Xem chi tiết
HN
13 tháng 5 2021 lúc 10:29

giúp mih đi mih đang làm bài kt

 

Bình luận (0)
NY
Xem chi tiết
NT
14 tháng 5 2016 lúc 22:42

Diện tích tam giác vuông ABD vuông tại A được tính theo 2 cách:

\(S_{ABD}=\frac{AB\times AD}{2}=\frac{AH\times BD}{2}=\frac{S_{ABCD}}{2}=\frac{4\sqrt{3}}{2}\)

=> \(AH\times BD=4\sqrt{3}\)

=> \(BD\times\sqrt{3}=4\sqrt{3}\)

=> \(BD=4\left(cm\right)\)

Tam giác AHB đồng dạng tam giác DHA theo trường hợp góc - góc nên suy ra:
\(\frac{AH}{HD}=\frac{BH}{AH}\) => \(AH^2=BH\times DH=\left(BD-DH\right)\times DH\)

=> \(\left(\sqrt{3}^2\right)=3=\left(4-DH\right)\times DH\)

=> \(4DH-DH^2-3=0\)

=> \(-\left(DH^2-4DH+3\right)=0\)

=> \(DH^2-4DH+3=0\)

=> \(DH^2-DH-3DH+3=0\)

=> \(DH\left(DH-1\right)-3\left(DH-1\right)=0\)

=> \(\left(DH-1\right)\left(DH-3\right)=0\)

Với trường hợp DH=1 (cm) thì theo định lí Pytago, ta sẽ tính được AD=2(cm)

Với trường hợp DH=3(cm) thì theo định lí Pytago, ta sẽ tính được \(AD=\sqrt{12}\left(cm\right)\)

Vậy độ dài chiều dài của hình chữ nhật đó là \(\sqrt{12}\left(cm\right)\)

Bình luận (0)
VM
Xem chi tiết
H24
Xem chi tiết
TM
Xem chi tiết
LA
Xem chi tiết
ZZ
5 tháng 11 2019 lúc 20:29

A B C D H E F R

Gọi R là trung điểm của AH.

E là trung điểm của DH,R là trung điểm của AH nên ER là đường trung bình

\(\Rightarrow ER//DC\) mà \(DC\perp AB\Rightarrow ER\perp AB\)

Xét tam giác ABH có đường cao ER và AR cắt nhau tại R nên R là trực tâm tam giác ABH.

\(\Rightarrow BR\perp AH\)

Do ER là đường trung bình nên \(ER=\frac{1}{2}AC\) mặt khác \(BF=\frac{1}{2}BC\) mà \(AC=BC\Rightarrow ER=BF\)

Ta có ER=BF;ER//BF nên tứ giác ERBF là hình bình hành 

\(\Rightarrow FE//BR\) mà \(BR\perp AE\)  nên \(FE\perp AE\) ( đpcm )

Bình luận (0)
 Khách vãng lai đã xóa
MA
Xem chi tiết