cho HCN ABCD , H là hình chiếu của B lên AC .M là trung điểm của AH và N là trung điểm của BH qua M kẻ đg thẳng vuông góc với BM cắt CD tại K . CMR MKCN là hbh
cho hình chữ nhật abcd , bh vuông góc ac ( h e ac) m là trung điểm ah, n là trung điểm bh. qua m kẻ đường thẳng vuông góc bm cắt cd tại k. chứng minh mkcn là hình bình hành.
P/s : nhờ các anh các chị giúp em. nếu vẽ thêm hình nữa thì càng tốt. mai em đi học rồi ạ
cho tam giác ABC có 3 góc nhọn các đường cao AD , BE , CF cắt nhau tại H . M,N là trung điểm lần lượt của HC ,AC . AM cắt HN ở G . Đg Thẳng qua M vuông góc với HC. Đg qua N vuông góc với AC cắt tai K CMR a sAEF sABC cosBAC 2b BH KM BA KNc √GA5 GB5 GH5GM5 GK5 GN5
Cho hình chữ nhật ABCD có AD=6cm: AB=8cm: hai đg chéo AC và BD cắt nhau tại 0. Qua D kẻ đg thẳng d vuông góc với BD, d cắt tia BC tại E
a, Gọi K là giao điểm của OE Và HC. CM K là trung điểm của HC và tỉ số diện tích của tam giác EHC và diện tích của tam giác EDB
b, CMR: ba đường thẳng OE , CD, BH đồng qui
cho hcn ABCD, kẻ BK vuông với AC , lấy M,N lần lượt là trung điểm của AK,DC.Kẻ CI vuông với BM.(CI thuộc BM).CI cắt BK tại E.
C/m: ME vuông góc BC
C/m: MNCE là hbh
bài 1:cho tứ giác ABCD có AC =BD dựng ra phía ngoài các tam giác cân đồng dạng AMB và CND cân lần lượt tại M và N, gọi E, I là trung điểm AD,BC.CMR MN vuông góc vs IE
bài 2:cho hình vuông ABCD. Trên AB, BC lấy M,N sao cho BM=BN, kẻ BH vuông góc CM. CMR: DH vuông góc HN
bài 3:cho hình thang ABCD (AB//CD) gọi E đối xứng vs D qua B, gọi M, N là trung điểm của AB, CD. Đường thẳng EM cắt AD tại K, đường thẳng EN cắt BC tại I. CMR:KI//CD
bài 4: cho hình chữ nhật ABCD. Kẻ AH vuông góc BD. Lấy M,N thuộc BH và DC sao cho BM/MH =CN/ND.CMR:góc AMN = 90 độ
bài 5:cho tam giác ABC đều. Một đường song song AC cắt AB và BC theo thứ tự tại I và J, gọi K là trung điểm AJ và O là trọng tâm tam giac BIJ. Tính các góc tam giác OKC
anh chị nào thông minh giải hộ em mấy bài này với, em hứa là sẽ có hoa hồng cho anh chị.
cho tam giác abc vuông tại a (ab<ac).Vẽ đường cao ah, gọi m,n lần lượt là trung điểm ah, bh.
A) chứng minh tứ giác abnm là hình thang
B) gọi d là trung diểm của cạnh bc, từ d kẻ đg thẳng song song với ac, ab và lần lượt cắt ab tại e, cắt ac tại f. Chứng minh tứ giác aedf là hình chữ nhật
Tam giác ABC vuông tại A , M thuộc cạnh AC. Từ C kẻ đường thẳng vuông góc với BM cắt BM tại D, cắt AB tại E
a. CMR: AE.EB=EC.ED
b. CMR: BM.BD+CM.CA không đổi
c. Kẻ DH vuông góc với BC cắt BC tại H, lấy P và Q lần lượt là trung điểm BH và DH. CMR: CQ vuông góc với PD
cho hình thang ABCD ( AB//CD ). Gọi K,M lần lượt là trung điểm của BD, AC. Đường vuông góc kẻ từ K xuống AD cắt đg vuông góc kẻ từ M xuống BC tại Q. CM QC=QD