Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NH
Xem chi tiết
NN
14 tháng 8 2023 lúc 22:20

1.

a.\(A=1+2^1+2^2+2^3+...+2^{2007}\)

\(2A=2+2^2+2^3+....+2^{2008}\)

b. \(A=\left(2+2^2+2^3+...+2^{2008}\right)-\left(1+2^1+2^2+..+2^{2007}\right)\)

\(=2^{2008}-1\) (bạn xem lại đề)

 

2.

\(A=1+3+3^1+3^2+...+3^7\)

a. \(2A=2+2.3+2.3^2+...+2.3^7\)

b.\(3A=3+3^2+3^3+...+3^8\)

\(2A=3^8-1\)

\(=>A=\dfrac{2^8-1}{2}\)

 

3

.\(B=1+3+3^2+..+3^{2006}\)

a. \(3B=3+3^2+3^3+...+3^{2007}\)

b. \(3B-B=2^{2007}-1\)

\(B=\dfrac{2^{2007}-1}{2}\)

 

4.

Sửa: \(C=1+4+4^2+4^3+4^4+4^5+4^6\)

a.\(4C=4+4^2+4^3+4^4+4^5+4^6+4^7\)

b.\(4C-C=4^7-1\)

\(C=\dfrac{4^7-1}{3}\)

 

5.

\(S=1+2+2^2+2^3+...+2^{2017}\)

\(2S=2+2^2+2^3+2^4+...+2^{2018}\)

\(S=2^{2018}-1\)

Bình luận (1)
NT
14 tháng 8 2023 lúc 22:09

4:

a:Sửa đề: C=1+4+4^2+4^3+4^4+4^5+4^6

=>4*C=4+4^2+...+4^7

b: 4*C=4+4^2+...+4^7

C=1+4+...+4^6

=>3C=4^7-1

=>\(C=\dfrac{4^7-1}{3}\)

5:

2S=2+2^2+2^3+...+2^2018

=>2S-S=2^2018-1

=>S=2^2018-1

Bình luận (2)
TN
Xem chi tiết
MH
16 tháng 9 2021 lúc 14:56

A \(=\)\(1+2^1+2^2+...+2^{2007}\)

⇒2 A \(=\)\(2+2^2+...+2^{2007}+2^{2008}\)

2A - A \(=\)( \(2+2^2+...+2^{2007}+2^{2008}\) ) - ( \(1+2^1+2^2+...+2^{2007}\) )

A\(=\)\(2^{2008}-1\)

\(3A=3\left(2^{2008}-1\right)\)

      \(=3.2^{2008}-3\)

 

Bình luận (0)
TP
Xem chi tiết
H24
26 tháng 10 2023 lúc 21:45

\(A=4+2^2+2^3+...+2^{2006}\)

\(\mathsf{Đặt}:B=2^2+2^3+...+2^{2006}\\2B=2^3+2^4+...+2^{2007}\\2B-B=(2^3+2^4+...+2^{2007})-(2^2+2^3+...+2^{2006})\\B=2^{2007}-2^2\\B=2^{2007}-4\)

Thay \(B=2^{2007}-4\) vào A, ta được:

\(A=4+(2^{2007}-4)\\\Rightarrow A=2^{2007}\)

$\Rightarrow A$ là 1 luỹ thừa của cơ số 2.

Vậy: ...

Bình luận (0)
LD
Xem chi tiết
TL
6 tháng 4 2017 lúc 8:07

Số số hạng của biểu thức A là: (40-21):1+1=20(số hạng)

Ta có : 1/21>1/40,1/22>1/40,1/23>1/40,...,1/40=1/40

      1/21+1/22+1/23+...+1/40>1/40+1/40+1/41+1/40+...+1/40( 20 số 1/40)

      A>1/40x20=1/2

      A>1/20  (1)

Lại có: 1/21=1/21,1/21>1/22,1/21>1/23,...,1/21>1/40

      1/21+1/21+1/21+...+1/21(20 số 1/21)>1/21+1/22+1/23+...+1/40

      1/21x20>A

      20/21>A.Mà 1>20/21

    1>A   (2)

Từ (1) và (2) ta có : 1/2<A<1(đpcm)

Vậy bài tôán đđcm

Bình luận (0)
ND
6 tháng 4 2017 lúc 8:07

\(\frac{1}{2}=\frac{1}{40}+\frac{1}{40}+....+\frac{1}{40}\)có 20 số hạng      \(\)

\(\frac{1}{21}+\frac{1}{22}+....+\frac{1}{40}\)có 20 số hạng

\(\frac{1}{21}>\frac{1}{40}\)

\(\frac{1}{22}>\frac{1}{40}\)

\(.....\)

\(\frac{1}{40}=\frac{1}{40}\)\(\Rightarrow\frac{1}{2}< \frac{1}{21}+\frac{1}{22}+.....+\frac{1}{40}\)

\(1=\frac{1}{40}+....+\frac{1}{40}\)có 40 số hạng mà A chỉ có 20 số hạng 

\(\Rightarrow\frac{1}{2}< A< 1\)

Bình luận (0)
DP
Xem chi tiết
GD
23 tháng 3 2023 lúc 21:24

1/20 .21 + 1/22 .23 + .... + 1/79 .80

= 1/20 - 1/21  + 1/22 - 1/23 + .......... + 1/79 - 1/80

= 1/20 - 1/80

= 3/80

Ta thấy : 3/80 < 1 

=> 1/20 . 21 + 1/22 . 23 + ........ + 1/79 . 80 <1 (ĐPCM)

Bình luận (0)
NN
Xem chi tiết
QB
Xem chi tiết
NL
Xem chi tiết
LT
21 tháng 2 2021 lúc 17:32

image

Bình luận (0)
NT
21 tháng 2 2021 lúc 22:02

Ta có: \(A=2+2^2+2^3+...+2^{120}\)

\(=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{118}+2^{119}+2^{120}\right)\)

\(=14+2^3\cdot14+...+2^{117}\cdot14\)

\(=14\cdot\left(1+2^3+...+2^{117}\right)⋮7\)

Ta có: \(A=2+2^2+2^3+...+2^{120}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)

\(=62+2^5\cdot62+...+2^{115}\cdot62\)

\(=62\cdot\left(1+2^5+...+2^{115}\right)⋮31\)

Ta có: \(A=2+2^2+2^3+...+2^{120}\)

\(=\left(2+2^2+2^3+2^4+2^5+2^6\right)+\left(2^7+2^8+2^9+2^{10}+2^{11}+2^{12}\right)+...+\left(2^{115}+2^{116}+2^{117}+2^{118}+2^{119}+2^{120}\right)\)

\(=126+126\cdot2^6+...+126\cdot2^{114}\)

\(=126\cdot\left(1+2^6+...+2^{114}\right)⋮21\)

Bình luận (0)
DA
Xem chi tiết
KL
22 tháng 10 2023 lúc 12:13

a) P = 1 + 3 + 3² + ... + 3¹⁰¹

= (1 + 3 + 3²) + (3³ + 3⁴ + 3⁵) + ... + (3⁹⁹ + 3¹⁰⁰ + 3¹⁰¹)

= 13 + 3³.(1 + 3 + 3²) + ... + 3⁹⁹.(1 + 3 + 3²)

= 13 + 3³.13 + ... + 3⁹⁹.13

= 13.(1 + 3³ + ... + 3⁹⁹) ⋮ 13

Vậy P ⋮ 13

b) B = 1 + 2² + 2⁴ + ... + 2²⁰²⁰

= (1 + 2² + 2⁴) + (2⁶ + 2⁸ + 2¹⁰) + ... + (2²⁰¹⁶ + 2²⁰¹⁸ + 2²⁰²⁰)

= 21 + 2⁶.(1 + 2² + 2⁴) + ... + 2²⁰¹⁶.(1 + 2² + 2⁴)

= 21 + 2⁶.21 + ... + 2²⁰¹⁶.21

= 21.(1 + 2⁶ + ... + 2²⁰¹⁶) ⋮ 21

Vậy B ⋮ 21

c) A = 2 + 2² + 2³ + ... + 2²⁰

= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁷ + 2¹⁸ + 2¹⁹ + 2²⁰)

= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2¹⁶.(2 + 2² + 2³ + 2⁴)

= 30 + 2⁴.30 + ... + 2¹⁶.30

= 30.(1 + 2⁴ + ... + 2¹⁶)

= 5.6.(1 + 2⁴ + ... + 2¹⁶) ⋮ 5

Vậy A ⋮ 5

d) A = 1 + 4 + 4² + ... + 4⁹⁸

= (1 + 4 + 4²) + (4³ + 4⁴ + 4⁵) + ... + (4⁹⁷ + 4⁹⁸ + 4⁹⁹)

= 21 + 4³.(1 + 4 + 4²) + ... + 4⁹⁷.(1 + 4 + 4²)

= 21 + 4³.21 + ... + 4⁹⁷.21

= 21.(1 + 4³ + ... + 4⁹⁷) ⋮ 21

Vậy A ⋮ 21

e) A = 11⁹ + 11⁸ + 11⁷ + ... + 11 + 1

= (11⁹ + 11⁸ + 11⁷ + 11⁶ + 11⁵) + (11⁴ + 11³ + 11² + 11 + 1)

= 11⁵.(11⁴ + 11³ + 11² + 11 + 1) + 16105

= 11⁵.16105 + 16105

= 16105.(11⁵ + 1)

= 5.3221.(11⁵ + 1) ⋮ 5

Vậy A ⋮ 5

Bình luận (0)
BD
Xem chi tiết
ND
3 tháng 2 2023 lúc 22:07

 

b.ta chia B thành 10 nhóm mỗi nhóm có 6 hạng tử  \(B=\left(2+2^2+2^3+2^4+2^5+2^6\right)+....+\left(2^{55}+2^{56}+2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(B\text{=}2\left(1+2+2^2+2^3+2^4+2^5\right)+...+2^{55}\left(1+2+2^2+2^3+2^4+2^5\right)\)

\(B\text{=}2.63+...+2^{56}.63\)

\(\Rightarrow B⋮63\)

\(\Rightarrow B⋮21\)

 

Bình luận (0)