Những câu hỏi liên quan
1L
Xem chi tiết
NT
26 tháng 9 2021 lúc 15:24

ĐKXĐ: \(x\in R\)

Bình luận (0)
VV
Xem chi tiết
AH
10 tháng 8 2021 lúc 23:18

Lời giải:

a. ĐKXĐ: 

\(\left\{\begin{matrix} x-1\geq 0\\ 2\geq \sqrt{x-1}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ 4\geq x-1\end{matrix}\right. \Leftrightarrow 5\geq x\geq 1\)

b. ĐKXĐ:

\(\left\{\begin{matrix} x\geq 0\\ 3\geq \sqrt{x}\end{matrix}\right.\Leftrightarrow 0\leq x\leq 9\)

 

Bình luận (0)
LL
Xem chi tiết
AT
7 tháng 7 2021 lúc 16:23

a) Để căn thức bậc 2 có nghĩa \(\Rightarrow3-5x\ge0\Rightarrow x\le\dfrac{3}{5}\)

b) Để căn thức bậc 2 có nghĩa \(\Rightarrow\dfrac{5}{2x+1}\ge0\Rightarrow2x+1>0\Rightarrow x>-\dfrac{1}{2}\)

 
Bình luận (0)
MY
7 tháng 7 2021 lúc 16:23

\(a,x\le\dfrac{3}{5}\)

b,\(x>-\dfrac{1}{2}\)

Bình luận (0)
LN
7 tháng 7 2021 lúc 16:25

a, để căn thức có nghĩa thì 3-5x≥0⇔x≤\(\dfrac{3}{5}\)

b, để căn thức có nghĩa thì 2x+1>0⇔x>\(\dfrac{-1}{2}\)

Bình luận (0)
LL
Xem chi tiết
LH
6 tháng 7 2021 lúc 20:50

1.a) Để căn thức có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x^2}{2x-1}\ge0\\2x-1\ne0\end{matrix}\right.\)

\(\Leftrightarrow2x-1>0\Leftrightarrow x>\dfrac{1}{2}\)

Vậy...

b, \(\dfrac{\sqrt[3]{625}}{\sqrt[3]{5}}-\sqrt[3]{-216}.\sqrt[3]{\dfrac{1}{27}}=\sqrt[3]{\dfrac{625}{5}}-\sqrt[3]{-\dfrac{216}{27}}=\sqrt[3]{125}-\sqrt[3]{-8}=5-\left(-2\right)=7\)

Bình luận (0)
NT
6 tháng 7 2021 lúc 20:56

a) Để căn thức có nghĩa thì 2x-1>0

\(\Leftrightarrow2x>1\)

hay \(x>\dfrac{1}{2}\)

b) Ta có: \(\dfrac{\sqrt[3]{625}}{\sqrt[3]{5}}-\sqrt[3]{-216}\cdot\sqrt[3]{\dfrac{1}{27}}\)

\(=5-\left(-6\right)\cdot\dfrac{1}{3}\)

\(=5+6\cdot\dfrac{1}{3}=5+2=7\)

Bình luận (0)
NA
Xem chi tiết
2T
1 tháng 9 2019 lúc 14:10

Biểu thức trong căn thức \(\sqrt{\frac{3x+1}{10}}\)phải lớn hơn hoặc bằng 0

Căn thức có nghĩa\(\Leftrightarrow3x+1\ge0\Leftrightarrow x\ge\frac{-1}{3}\)

Bình luận (0)
LM
Xem chi tiết
H24
26 tháng 9 2023 lúc 19:31

Để căn thức \(\sqrt{\dfrac{2x+1}{x^2+1}}\) có nghĩa thì:

\(\left\{{}\begin{matrix}\dfrac{2x+1}{x^2+1}\ge0\\x^2+1\ne0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2x+1\ge0\left(vì.x^2+1>0\forall x\right)\\x^2+1\ne0\forall x\end{matrix}\right.\)

\(\Rightarrow2x\ge-1\Leftrightarrow x\ge-\dfrac{1}{2}\)

#\(Toru\)

Bình luận (0)
H9
26 tháng 9 2023 lúc 19:23

\(\sqrt{\dfrac{2x+1}{x^2+1}}\)

Có nghĩa khi:

\(\dfrac{2x+1}{x^2+1}\ge0\)

\(\Leftrightarrow2x+1\ge0\)

\(\Leftrightarrow2x\ge-1\)

\(\Leftrightarrow x\ge-\dfrac{1}{2}\)

Vậy: ... 

Bình luận (0)
CD
Xem chi tiết
QD
6 tháng 8 2019 lúc 13:00

ĐKXD : \(\sqrt{\frac{2}{3}x-\frac{1}{5}}\ge0\)

\(\Leftrightarrow\frac{2}{3}x-\frac{1}{5}\ge0\)

\(\Leftrightarrow\frac{2}{3}x\ge\frac{1}{5}\\ \Leftrightarrow x\ge\frac{3}{10}\)

Bình luận (0)
H24
Xem chi tiết
NT
27 tháng 7 2021 lúc 13:03

1) ĐKXĐ: \(\left[{}\begin{matrix}x\ge2\\x\le1\end{matrix}\right.\)

2) ĐKXĐ: \(\dfrac{x-6}{x-2}\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2< 0\\x-6\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< 2\\x\ge6\end{matrix}\right.\)

3) ĐKXĐ: \(\dfrac{2x-4}{5-x}\ge0\)

\(\Leftrightarrow\dfrac{x-2}{x-5}\le0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2\ge0\\x-5< 0\end{matrix}\right.\Leftrightarrow2\le x< 5\)

Bình luận (0)
H24
27 tháng 7 2021 lúc 12:53

GIÚP VỚI Ạ

Bình luận (0)
MD
Xem chi tiết
PH
28 tháng 8 2018 lúc 19:19

Căn thức xác định \(\Leftrightarrow x^2+5x+4\ge0\)

                            \(\Leftrightarrow\left(x+1\right)\left(x+4\right)\ge0\)

Do đó: (x+1) và (x+4) là 2 số cùng dấu.

TH1: \(\hept{\begin{cases}x+1\ge0\\x+4\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\ge-4\end{cases}\Leftrightarrow}x\ge-1}\)

TH2: \(\hept{\begin{cases}x+1\le0\\x+4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le-1\\x\le-4\end{cases}\Leftrightarrow}x\le-4}\)

Vậy \(\orbr{\begin{cases}x\ge-1\\x\le-4\end{cases}}\)

Chúc bạn học tốt.

Bình luận (0)
PP
Xem chi tiết