Những câu hỏi liên quan
PP
Xem chi tiết
H24
2 tháng 9 2018 lúc 14:38

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

Bình luận (0)

a)\(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}\)\(x-y+z=36\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{5}=\frac{y}{6}=\frac{z}{7}=\frac{x-y+z}{5-6+7}=\frac{36}{6}=6\)

\(\Rightarrow\)\(x=5.6=30\)
         \(y=6.6=36\)

         \(z=7.6=30\)

b)\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}\)\(x+y-z=32\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{x+y-z}{5+\left(-6\right)-7}=\frac{32}{-8}=-4\)

\(\Rightarrow\)\(x=-4.5=-20\)

         \(y=-4.-6=24\)

         \(z=-4.7=-28\)

c)\(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}\)và \(2x+3y+4z\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}=\frac{2x+3y+4z}{2.5+3.3+4.2}\)\(=\frac{54}{27}=2\)

\(\Rightarrow\)\(x=2.5=10\)

         \(y=2.3=6\)
         \(z=2.2=4\)

d)\(\frac{x}{5}=\frac{y}{2}=\frac{z}{3}\)và \(2x-3y+5z=38\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{5}=\frac{y}{2}=\frac{z}{3}=\frac{2x-3y+5z}{2.5-3.2+5.3}=\frac{38}{19}=2\)

\(\Rightarrow\)\(x=2.5=10\)

         \(y=2.2=4\)

          \(z=3.2=6\)

Hok tốt!

@Kaito Kid

Bình luận (0)
 Khách vãng lai đã xóa
3T
Xem chi tiết
NT
11 tháng 11 2021 lúc 20:28

4: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y-z}{8-12-15}=\dfrac{38}{-19}=-2\)

Do đó: x=-16; y=-24; z=-30

Bình luận (0)
LL
Xem chi tiết
NH
Xem chi tiết
NH
19 tháng 10 2017 lúc 19:12

mấy bạn làm dùm mình với

Bình luận (0)
KT
19 tháng 10 2017 lúc 19:21

Ta có: \(\frac{x}{2}\)\(\frac{y}{3}\);    \(\frac{y}{4}\)=  \(\frac{z}{5}\)

\(\Rightarrow\)\(\frac{x}{8}\)=  \(\frac{y}{12}\) =   \(\frac{z}{15}\) 

Ap dụng tính chất dãy tỉ số bằng nhau ta co:

            \(\frac{x}{8}\)=   \(\frac{y}{12}\)  =  \(\frac{z}{15}\)   =   \(\frac{x-y-z}{8-12-15}\)=  \(\frac{38}{-19}\)=  -2

suy ra \(\hept{\begin{cases}\frac{x}{8}=-2\\\frac{y}{12}=-2\\\frac{z}{15}=-2\end{cases}}\)\(\Rightarrow\)\(\hept{\begin{cases}x=-16\\y=-24\\z=-30\end{cases}}\)

Vậy  x = -16:   y = -24:   z = -30.

Bạn ơi đúng thì k cho mk nha

Bình luận (0)
TV
Xem chi tiết
YN
20 tháng 11 2021 lúc 20:43

Với các bài khá nâng cao như vậy bạn đăng tách ra nhé!

Answer:

a) Ta có: \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Ta đặt: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\left(k\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}x=3k\\y=4k\\z=5k\end{cases}}\)

Ta có: \(5z^2-3x^2-2y^2=594\)

\(\Rightarrow5.\left(5k\right)^2-3.\left(3k\right)^2-2.\left(4k\right)^2=594\)

\(\Rightarrow5.5^2k^2-3.3^2k^2-2.4^2k^2=594\)

\(\Rightarrow5.25k^2-3.9k^2-2.16.k^2=594\)

\(\Rightarrow125k^2-27k^2-32k^2=594\)

\(\Rightarrow k^2.\left(125-27-32\right)=594\)

\(\Rightarrow k^2.66=594\)

\(\Rightarrow k^2=9\)

\(\Rightarrow k=\pm3\)

Với \(k=3\Rightarrow\hept{\begin{cases}x=3.3=9\\y=3.4=12\\z=3.5=15\end{cases}}\)

Với \(k=-3\Rightarrow\hept{\begin{cases}x=\left(-3\right).3=-9\\y=\left(-4\right).3=-12\\z=\left(-5\right).3=-15\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
YN
20 tháng 11 2021 lúc 21:10

Answer:

b) \(3.\left(x-1\right)=2.\left(y-2\right)\Rightarrow6.\left(x-1\right)=4.\left(y-2\right)\)

Mà: \(4.\left(y-2\right)=3.\left(z-3\right)\)

\(\Rightarrow6.\left(x-1\right)=4.\left(y-2\right)=3.\left(z-3\right)\)

\(\Rightarrow\frac{6.\left(x-1\right)}{12}=\frac{4.\left(y-2\right)}{12}=\frac{3.\left(z-3\right)}{12}\Rightarrow\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}==\frac{\left(2x-2\right)+\left(3y-6\right)-z}{4+9-4}=\frac{2x-2+3y-6-z}{9}=\frac{\left(2x+3y-z\right)-\left(2+6\right)}{9}=\frac{50-8}{9}=\frac{14}{3}\)

\(\Rightarrow\hept{\begin{cases}x-1=2.\frac{14}{3}=\frac{28}{3}\\y-2=3.\frac{14}{3}=14\\z-3=4.\frac{14}{3}=\frac{56}{3}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{31}{3}\\y=16\\z=\frac{68}{3}\end{cases}}\)

c) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{2x}{3.12}=\frac{3y}{4.12}=\frac{4z}{5.12}\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y-z}{18+16-15}=\frac{38}{19}=2\)

\(\Rightarrow\frac{x}{18}=2\Rightarrow x=18.2=36\)

\(\Rightarrow\frac{y}{16}=2\Rightarrow y=16.2=32\)

\(\Rightarrow\frac{z}{15}=2\Rightarrow z=15.2=30\)

Bình luận (0)
 Khách vãng lai đã xóa
DL
Xem chi tiết
NT
18 tháng 2 2023 lúc 13:39

x và y tỉ lệ nghịch với 6 và 5

nên 6x=5y

=>x/5=y/6

y và z tỉ lệ nghịch với 4 và 3

nên 4y=3z

=>y/3=z/4

=>x/5=y/6=z/8=(x+y+z)/(5+6+8)=38/19=2

=>x=10; y=12; z=16

Bình luận (0)
TD
Xem chi tiết
H24
10 tháng 8 2021 lúc 10:20

x2=y3=z5=x−2y+3z2−2.3+3.5=3811

Bình luận (0)
H24
10 tháng 8 2021 lúc 10:23

Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{y}{5}\)\(\Rightarrow\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{15}=\dfrac{x-2y+3z}{2-6+15}=\dfrac{38}{11}\)

\(\dfrac{x}{2}=\dfrac{38}{11}\Rightarrow x=\dfrac{76}{11}\)

\(\dfrac{y}{3}=\dfrac{38}{11}\Rightarrow y=\dfrac{114}{11}\)

\(\dfrac{z}{5}=\dfrac{38}{11}\Rightarrow z=\dfrac{190}{11}\)

Bình luận (0)

Giải:

Áp dụng t/c của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-2y+3z}{2-2.3+3.5}=\dfrac{38}{11}\) 

Suy ra:

\(\dfrac{x}{2}=\dfrac{38}{11}\Rightarrow x=\dfrac{38.2}{11}=\dfrac{76}{11}\) 

\(\dfrac{y}{3}=\dfrac{38}{11}\Rightarrow y=\dfrac{38.3}{11}=\dfrac{114}{11}\) 

\(\dfrac{z}{5}=\dfrac{38}{11}\Rightarrow z=\dfrac{38.5}{11}=\dfrac{190}{11}\)

Bình luận (0)
LB
Xem chi tiết
LT
Xem chi tiết
NH
23 tháng 9 2019 lúc 21:27

a) Áp dung TC của dãy tỉ số bằng nhau ta có :

    \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{30}{10}=3\)

\(\Rightarrow\hept{\begin{cases}x=3.2=6\\y=3.3=9\\z=3.5=15\end{cases}}\)

Bình luận (0)
H24
23 tháng 9 2019 lúc 21:31

a) x + y + z = 30 

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=>\frac{x+y+z}{2+3+5}=\frac{30}{10}\)= 3

Suy ra ta có : 

x/2 = 3

y/3 = 3

z/5 = 3

=> x = 2.3 = 6

    y = 3.3 = 9

   z = 5.3 = 15

Vậy........

~ Còn tiếp....

Bình luận (0)
LD
23 tháng 9 2019 lúc 21:36

b, Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x-2y+3z}{2-2.3+3.5}=\frac{38}{11}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{38}{11}.2=\frac{76}{11}\\y=\frac{38}{11}.3=\frac{114}{11}\\z=\frac{38}{11}.5=\frac{190}{11}\end{cases}}\)

                       Vậy ..........................................

 Kết luận giúp mình nha :)))

Bình luận (0)
NP
Xem chi tiết
H24
11 tháng 10 2020 lúc 15:27

Mình ko ghi áp dụng tính chất dãy bằng nhau nx nhé

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=2\Rightarrow x=2.2=4;y=2.3=6;z=2.4=8\)

\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{-z}{-7}=\frac{x+y-z}{5-6-7}=\frac{32}{-8}=-4\Leftrightarrow x=-20;y=24;z=-28\)

\(\frac{2x}{10}=\frac{3y}{6}=\frac{5z}{15}=\frac{2x-3y+5z}{10-6+15}=\frac{38}{19}=2\Rightarrow x=10;y=4;z=6\)

Bình luận (0)
 Khách vãng lai đã xóa
NP
11 tháng 10 2020 lúc 15:46

bn làm đúng rồi nhá và 1 k cho bạn

Bình luận (0)
 Khách vãng lai đã xóa