Tìm GTNN của biểu thức:
\(A=\sqrt{4x^2+4}+\sqrt{4x^2-6x+10}\)
Tìm GTNN của biểu thức M=\(\sqrt{x^2-4x+4}+2014\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}\)
\(M=\sqrt{x^2-4x+4}+2014\sqrt{x^2-6x+9}+\sqrt{x^2-10x+25}\)
\(M=\left|x-2\right|+2014\left|x-3\right|+\left|x-5\right|\)
\(M=\left|x-2\right|+\left|5-x\right|+2014\left|x-3\right|\)
\(M\ge\left|x-2+5-x\right|+2014\left|x-3\right|=3+2014\left|x-3\right|\ge3\)
\("="\Leftrightarrow x=3\)
Tìm GTNN của biểu thức:
\(A=\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\)
\(B=\sqrt{x^2+4x+4}+\sqrt{x^2+6x+9}\)
Ngại làm lần 2 quá bạn ơi
Câu hỏi của Chuột yêu Gạo - Toán lớp 9 | Học trực tuyến
Tìm GTNN của biểu thức
a)\(\sqrt{x^2-6x+9}+\sqrt{x^2+10x+25}\)
b)\(\sqrt{x^2+4x+4}+\sqrt{x^2-2x+1}+\sqrt{x^2-14x+49}\)
tìm GTNN của biểu thức
\(\sqrt{x^2-2x+10}+\sqrt{x^2+4x+5}\)
tìm GTNN của biểu thức
\(\sqrt{x^2-2x+10}+\sqrt{x^2+4x+5}\)
Ta có: \(\sqrt{x^2-2x+10}=\sqrt{x^2-2x+1+9}=\sqrt{\left(x-1\right)^2+9}\ge\sqrt{9}\ge3\)
\(\sqrt{x^2+4x+5}=\sqrt{x^2+4x+4+1}=\sqrt{\left(x+2\right)^2+1}\ge\sqrt{1}\ge1\)
\(\Rightarrow\) \(\sqrt{x^2-2x+10}+\sqrt{x^2+4x+5}\ge1+3\ge4\)
Vậy GTNN của biểu thức là 4
Tìm GTNN của biểu thức sau :
M=\(2\sqrt{9x^2-6x+2}+3\sqrt{4x^2+4x+2}\)
Tìm GTNN của biểu thức P=\(\sqrt{4x^2-12x+9}+\sqrt{4x^2-8x+4}\)
Ta có:
\(P=\sqrt{4x^2-12x+9}+\sqrt{4x^2-8x+4}\)
\(=\sqrt{\left(2x\right)^2-2.2x.3+3^2}+\sqrt{\left(2x\right)^2-2.2x.2+2^2}\)
\(=\sqrt{\left(2x-3\right)^2}+\sqrt{\left(2x-2\right)^2}\)
\(=\left|2x-3\right|+\left|2x-2\right|\)
\(=\left|2x-3\right|+\left|2-2x\right|\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(P\ge\left|\left(2x-3\right)+\left(2-2x\right)\right|=\left|-1\right|=1\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-3\ge0\\2-2x\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ge\frac{3}{2}\\x\le1\end{cases}}\)
Vậy MinP = 1 \(\Leftrightarrow\hept{\begin{cases}x\ge\frac{3}{2}\\x\le1\end{cases}}\)
\(P=\sqrt{4x^2-12x+9}+\sqrt{4x^2-8x+4}\)
\(=\sqrt{\left(2x-3\right)^2}+\sqrt{\left(2x-2\right)^2}\)
\(=|2x-3|+|2-2x|\)
=>\(P\ge|\left(2x-3\right)+\left(2-2x\right)|=|-1|=1\)
\(P=\sqrt{4x^2-12x+9}+\sqrt{4x^2-8x+4}\)
\(=\sqrt{\left(2x-3\right)^2}+\sqrt{\left(2x-2\right)^2}\)
\(=\left|2x-3\right|+\left|2x-2\right|\)
\(=\left|3-2x\right|+\left|2x-2\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)ta có :
\(P=\left|3-2x\right|+\left|2x-2\right|\ge\left|3-2x+2x-2\right|=\left|1\right|=1\)
Đẳng thức xảy ra khi \(ab\ge0\)
=> \(\left(3-2x\right)\left(2x-2\right)\ge0\)
Xét hai trường hợp :
1. \(\hept{\begin{cases}3-2x\ge0\\2x-2\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}-2x\ge-3\\2x\ge2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\le\frac{3}{2}\\x\ge1\end{cases}}\Leftrightarrow1\le x\le\frac{3}{2}\)
2. \(\hept{\begin{cases}3-2x\le0\\2x-2\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}-2x\le-3\\2x\le2\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge\frac{3}{2}\\x\le1\end{cases}}\)( loại )
=> MinP = 1 <=> \(1\le x\le\frac{3}{2}\)
Tìm GTNN của biểu thức:
\(A=\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\)
\(B=\sqrt{x^2+4x+4}+\sqrt{x^2+6x+9}\)
\(A=\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\)
\(A=\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}\)
\(A=\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}\)
\(A=\left|\sqrt{x-1}-1\right|+\left|\sqrt{x-1}+1\right|\)
\(A=\left|1-\sqrt{x-1}\right|+\left|\sqrt{x-1}+1\right|\ge\left|1-\sqrt{x-1}+\sqrt{x-1}+1\right|=\left|2\right|=2\)
Dấu "=" xảy ra \(\Leftrightarrow1\le x\le2\)
\(B=\sqrt{x^2+4x+4}+\sqrt{x^2+6x+9}\)
\(B=\sqrt{\left(x+2\right)^2}+\sqrt{\left(x+3\right)^2}\)
\(B=\left|x+2\right|+\left|x+3\right|\)
\(B=\left|-x-2\right|+\left|x+3\right|\ge\left|-x-2+x+3\right|=\left|1\right|=1\)
Dấu "=" xảy ra \(\Leftrightarrow-3\le x\le-2\)
14. a. Tìm GTNN của biểu thức \(A=\sqrt{7+4x-4x^2}\)
helpp
\(MinA=0\Leftrightarrow7+4x-4x^2=0\Leftrightarrow x=\dfrac{1\pm2\sqrt{2}}{2}\)