Những câu hỏi liên quan
NT
Xem chi tiết
BN
17 tháng 3 2019 lúc 20:58

b)

 p = 2 thì 4p2 + 1 = 25 không là SNT.(số nguyên tố) 
* p = 3 thì 6p2 + 1 = 55 không là SNT 
* p = 5 thì 4p2 + 1=101 và 6p2 + 1 = 151 là SNT vậy p = 5 thỏa điều kiện đề bài. 
* P > 5 => p = 5k ±1, hoặc p = 5k ± 2. 
khi: p = 5k ± 1thì 
4p+ 1 = 4(25k2 ± 10k + 1) + 1= 4.25k± 4.10k + 5 > 5 và chia hết cho 5 
khi p = 5k ± 2 thì: 
6k2 + 1 =6(25k± 10k + 4) + 1 = 6.25k2 ± 6.10k + 25 > 5 và chia hết cho 5 
vậy khi p>5 thì 4p2+1 và 6p2+1 không đồng thời là SNT. 
=> p = 5 là SNT cần tìm.

Bình luận (0)
AM
Xem chi tiết
LL
8 tháng 11 2014 lúc 20:12

a; nếu p=3 thì p+2=5 , p+4=7 đều là số nguyên tố

    nếu p>3 thì p có 2 dạng : p=3k+1, p=3k+2

     với p=3k+1 thì p+2=3k+1+2=3k+3 chia hết cho 3 => p+2 là hợp số

    với p=3k+2 thì p+4=3k+2+4=3k+6 '''''''''''''''''''''''''''''''''''''''''''' =>p+4 là hợp số

                         Vậy p=3 thỏa mãn đề bài 

 

     các phần còn lại tương tự

 

Bình luận (0)
Xem chi tiết
H24
26 tháng 2 2021 lúc 17:13

Bài 1:

Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố

2 + 4 = 6 không là số nguyên tố

Vậy p = 2 không thỏa mãn

Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố

3 + 4 = 7 là số nguyên tố

Vậy p = 3 thỏa mãn

Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2 

Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố

Vậy p = 3k + 1 không thỏa mãn

Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố

Vậy p = 3k + 2 không thỏa mãn

Vậy p = 3 thỏa mãn duy nhất.

Bình luận (0)
H24
26 tháng 2 2021 lúc 17:19

Bài 2:

Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3

p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3

Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3

Vì thế 4p + 1 phải chia hết cho 3

Mà p > 3 nên 4p + 1 > 3

=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.

Bình luận (0)
H24
26 tháng 2 2021 lúc 17:30

Bài 3:

a) Nếu p = 2 thì p + 4 = 2 + 4 = 6 không là số nguyên tố

p + 8 = 2 + 8 = 10 không là số nguyên tố

Vậy p = 2 không thỏa mãn

 Nếu p = 3 thì p + 4 = 3 + 4 = 7 là số nguyên tố

p + 8 = 3 + 8 = 11 là số nguyên tố

Vậy p = 3 thỏa mãn

Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2

Nếu p = 3k + 1 thì p + 8 = 3k + 1 + 8 = 3k + 9 = 3(k + 3) không là số nguyên tố

p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố

Vậy p > 3 không thỏa mãn

Vậy p = 3 thỏa mãn duy nhất

Bình luận (0)
NN
Xem chi tiết
H24
13 tháng 3 2021 lúc 21:54

b, 

Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3

p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3

Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3

Vì thế 4p + 1 phải chia hết cho 3

Mà p > 3 nên 4p + 1 > 3

=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.

Bình luận (0)
 Khách vãng lai đã xóa
TV
10 tháng 12 2021 lúc 23:05
10000×2000?
Bình luận (0)
 Khách vãng lai đã xóa
TH
12 tháng 11 2023 lúc 19:52

hvnh

Bình luận (0)
HM
Xem chi tiết
KL
12 tháng 9 2023 lúc 7:35

Do 2p - 1 lẻ và 4p - 1 lẻ nên p chẵn

Vậy p = 2

Bình luận (0)
NH
12 tháng 9 2023 lúc 8:30

Dùng phương pháp đánh giá em nhá.

Nếu p = 2 ⇒ 2p - 1 = 4 - 1 = 3 (thỏa mãn)

        p = 2 ⇒ 4p - 1 = 8 - 1 = 7 (thỏa mãn)

Nếu p = 3 ⇒ 2p - 1 = 6- 1 = 5 (thỏa mãn)

       p  = 3 ⇒ 4p - 1 = 12 - 1 = 11 (thỏa mãn)

Nếu p > 3 ⇒ p = 3k + 1 (k \(\) \(\in\) N*)

       p = 3k + 1 ⇒ 4p - 1 = 4.(3k + 1) - 1 = 12k - 3 ⋮ 3(loại)

Nếu p = 3k + 2 ⇒ 2p - 1 = 2.(3k + 2) - 1 = 6k - 3 ⋮ 3(loại)

Từ những phân tích trên ta có p = 2; 3

Kết luận: p \(\in\) {2; 3}

    

        

  

Bình luận (0)
TL
Xem chi tiết
LP
23 tháng 11 2023 lúc 20:35

Xét \(p=2\) thì \(2p+1=5;4p+1=9\) không thỏa mãn.

Xét \(p=3\) thì \(2p+1=7;4p+1=13\), thỏa mãn.

Xét \(p>3\) thì \(p=3q+1;p=3q+2\left(q\inℕ^∗\right)\)

Nếu \(p=3q+1\) thì \(2p+1=2\left(3q+1\right)+1=6q+3⋮3\) . Hơn nữa \(6q+3>3\) nên \(2p+1\) là hợp số, không thỏa mãn.

Nếu \(p=3q+2\) thì \(4p+1=4\left(3q+2\right)+1=12q+9⋮3\) . Lại có \(12q+9>3\) nên \(4p+1\) là hợp số, không thỏa mãn.

Vậy \(p=3\) là số nguyên tố duy nhất thỏa mãn ycbt.

Bình luận (0)
AT
23 tháng 11 2023 lúc 20:30

là p =1

Bình luận (0)
AT
23 tháng 11 2023 lúc 20:32

1

Bình luận (0)
CN
Xem chi tiết
AH
11 tháng 10 2023 lúc 0:00

Lời giải:
Nếu $p\vdots 3$ thì $p=3$. Khi đó $2p+1=7, 4p+1=13$ đều là số nguyên tố (thỏa mãn) 

Nếu $p$ chia $3$ dư $1$. Đặt $p=3k+1$ với $k\in\mathbb{N}^*$

$\Rightarrow 2p+1=2(3k+1)+1=6k+3=3(2k+1)\vdots 3$. Mà $2p+1>3$ với mọi $p$ nên $2p+1$ không là snt (trái với giả thiết) - loại.

Nếu $p$ chia $3$ dư $2$. Đặt $p=3k+2$ với $k\in\mathbb{N}^*$

$\Rightarrow 4p+1=4(3k+2)+1=12k+9=3(4k+3)\vdots 3$. mà $4p+1>3$ với mọi $p$ nên không là snt(trái với giả thiết) - loại.

Vậy $p=3$ là đáp án duy nhất.

Bình luận (0)
JC
Xem chi tiết
VC
11 tháng 6 2018 lúc 21:16

xem lại đề đi bn ơi, t nghĩ phải là tìm số nguyên tố p chứ ?

Bình luận (0)
JC
11 tháng 6 2018 lúc 21:21

uk mk vt thiếu

Bình luận (0)
TZ
Xem chi tiết
KN
16 tháng 3 2019 lúc 21:25

Tìm số nguyên tố p để 4p^2+1 và 6p^2+1 cũng là số nguyên tố? | Yahoo Hỏi & Đáp

Bạn tham khảo

Bình luận (0)
TZ
17 tháng 3 2019 lúc 10:00

Bạn giải ra luôn được không

Bình luận (0)
BN
17 tháng 3 2019 lúc 20:58

 p = 2 thì 4p2 + 1 = 25 không là SNT.(số nguyên tố) 
* p = 3 thì 6p2 + 1 = 55 không là SNT 
* p = 5 thì 4p2 + 1=101 và 6p2 + 1 = 151 là SNT vậy p = 5 thỏa điều kiện đề bài. 
* P > 5 => p = 5k ±1, hoặc p = 5k ± 2. 
khi: p = 5k ± 1thì 
4p2 + 1 = 4(25k2 ± 10k + 1) + 1= 4.25k2 ± 4.10k + 5 > 5 và chia hết cho 5 
khi p = 5k ± 2 thì: 
6k2 + 1 =6(25k2 ± 10k + 4) + 1 = 6.25k2 ± 6.10k + 25 > 5 và chia hết cho 5 
vậy khi p>5 thì 4p2+1 và 6p2+1 không đồng thời là SNT. 
=> p = 5 là SNT cần tìm.

Bình luận (0)