cho biểu thức:
\(A=\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}\)
a) rút gọn A
b) tìm các giá trị của x để A=1
Cho biểu thức :
\(A=\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}\)
a) Rút gọn biểu thức A
b) Tìm giá trị của x để A=1
\(A=\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}\)
\(A=\sqrt{x^2-6x+3^2}-\sqrt{x^2+6x+3^2}\)
\(A=\sqrt{\left(x-3\right)^2}-\sqrt{\left(x+3\right)^2}\)
b)\(\sqrt{\left(x-3\right)^2}-\sqrt{\left(x+3\right)^2}=1\)
\(TH1:x-3>=0\)
\(< =>x+3>=0\)
\(\left|x-3\right|-\left|x+3\right|=1\)
\(x-3-x-3=1\)
\(-6=1\)(loại)
\(TH2:x-3< =0\)
\(x+3>=0\)
\(< =>\left|x-3\right|-\left|x+3\right|=1\)
\(3-x-x-3\)
\(-2x=1\)
\(x=-\frac{1}{2}\left(TM\right)\)
\(TH3:x-3< =0\)
\(x+3< =0\)
\(< =>\left|x-3\right|-\left|x+3\right|=1\)
\(3-x+X+3=1\)
\(6=1\)(loại)
\(< =>x=\left\{\frac{1}{2}\right\}\)để \(A=1\)
Cho biểu thức B =
\(\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}\)
a) Rút gọn
b) Tìm giá trị của x để B=1
\(1chobieuthucA=\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}\)
a)rút gọn A
b)tìm các giá trị của x để A=1
=\(\left|x-3\right|-\left|x+3\right|\)
*x>0
=x-3-x+3
=0
*x<0
=3-x-3+x
=0
A=\(\sqrt{x^2-6x+9}-\sqrt{x^2+6x-9}\)
a, Tìm đkxđ
b, Rút gọn A
c, Tìm giá trị của x để A =1
(3,0 điểm) Với x > 0 x ne4 , cho hai biểu thức. A = (sqrt(x) + 10)/(sqrt(x)) * vaB = 1/(sqrt(x) + 2) - (sqrt(x))/(sqrt(x) - 2) + (2x - sqrt(x) + 2)/(x - 4) 1 ) Tính giá trị của A khi x = 9 2) Rút gọn biểu thức B 3) Tìm tất cả các giá trị của x để biểu thức P =A.B có giá trị nguyên
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
Cho biểu thức:
\(A=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{3-11\sqrt{x}}{9-x}\)
a) Rút gọn biểu thức A.
b) Tìm tất cả các giá trị của x để \(A\ge0\).
a: Ta có: \(A=\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}+\dfrac{3-11\sqrt{x}}{9-x}\)
\(=\dfrac{2x-6\sqrt{x}+x+4\sqrt{x}+3-3+11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3x+9\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3\sqrt{x}}{\sqrt{x}-3}\)
b: Để \(A\ge0\) thì \(\sqrt{x}-3>0\)
hay x>9
Cho biểu thức:
A=\(\left(\frac{6x+1}{x^2-6x}+\frac{6x-1}{x^2+6x}\right)\frac{x^2-36}{12x^2+12}\) (Với \(x\ne0;x\ne\pm6\))
a) Rút gọn biểu thức A
b) Tìm giá trị biểu thức A với \(x=\frac{1}{\sqrt{9+4\sqrt{5}}}\)
Bài 1: Giải phương trình sau:
\(2x^2+5+2\sqrt{x^2+x-2}=5\sqrt{x-1}+5\sqrt{x+2}\)
Bài 2: Cho biểu thức
\(P=\left(\frac{6x+4}{3\sqrt{3x^2}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\frac{1+3\sqrt{3x^2}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) Tìm ĐKXĐ và rút gọn biểu thức P
b) Tìm tất cả các giá trị nguyên của x để biểu thức P có giá trị nguyên
Bài 3: Cho biểu thức
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\)
a) Tìm ĐKXĐ và rút gọn biểu thức A
b) Tìm tất cả các giá trị nguyên của x để biểu thức A có giá trị nguyên
Cho biểu thức \(A=\left(\frac{6x+1}{x^2-6}+\frac{6x-1}{x^2+6x}\right)\frac{x^2-36}{12x^2+12}\left(x\ne0;x\ne\pm6\right)\)
1, Rút gọn biểu thức A
2, Tính giá trị biểu thức A với \(x=\frac{1}{\sqrt{9+4\sqrt{5}}}\)
\(1,ĐK:x\ne0;x\ne\pm6\)
\(A=\left[\frac{6x+1}{x\left(x-6\right)}+\frac{6x-1}{x\left(x+6\right)}\right].\frac{\left(x+6\right)\left(x-6\right)}{12\left(x^2+1\right)}\)
\(=\frac{6x^2+36x+x+6+6x^2-36x-x+6}{x}.\frac{1}{12\left(x^2+1\right)}\)
\(=\frac{12\left(x^2+1\right)}{x}.\frac{1}{12\left(x^2+1\right)}=\frac{1}{x}\)
\(2,A=\frac{1}{x}=\frac{1}{\frac{1}{\sqrt{9+4\sqrt{5}}}}=\sqrt{9+4\sqrt{5}}\)
Cho tam giác ABC vuông tại B có góc B1=B2 ; Â=60o, kẻ BH vuông góc với AC (H thuộc AC). Qua B kẻ đường thẳng d song song với AC.
a) Tính góc ABH.
b) Chứng minh đường thẳng d vuông góc với BH.