Những câu hỏi liên quan
DA
Xem chi tiết
NH
Xem chi tiết
AH
28 tháng 6 2019 lúc 15:42

Lời giải:

a) ĐK: \(x>0; x\neq 25; x\neq 36\)

PT \(\Rightarrow (\sqrt{x}-2)(\sqrt{x}-6)=(\sqrt{x}-5)(\sqrt{x}-4)\)

\(\Leftrightarrow x-8\sqrt{x}+12=x-9\sqrt{x}+20\)

\(\Leftrightarrow \sqrt{x}=8\Rightarrow x=64\) (thỏa mãn)

Vậy.......

b)

ĐK: \(x\geq \frac{-1}{2}\)

PT \(\Leftrightarrow \sqrt{9(2x+1)}-\sqrt{4(2x+1)}+\frac{1}{3}\sqrt{2x+1}=4\)

\(\Leftrightarrow 3\sqrt{2x+1}-2\sqrt{2x+1}+\frac{1}{3}\sqrt{2x+1}=4\)

\(\Leftrightarrow \frac{4}{3}\sqrt{2x+1}=4\Leftrightarrow \sqrt{2x+1}=3\)

\(\Rightarrow x=\frac{3^2-1}{2}=4\) (thỏa mãn)

c)

ĐK: \(x\geq 2\)

PT \(\Leftrightarrow \sqrt{4(x-2)}-\frac{1}{2}\sqrt{x-2}+\sqrt{9(x-2)}=9\)

\(\Leftrightarrow 2\sqrt{x-2}-\frac{1}{2}\sqrt{x-2}+3\sqrt{x-2}=9\)

\(\Leftrightarrow \frac{9}{2}\sqrt{x-2}=9\Leftrightarrow \sqrt{x-2}=2\Rightarrow x=2^2+2=6\) (thỏa mãn)

Bình luận (0)
H24
Xem chi tiết
NT
24 tháng 7 2023 lúc 22:03

=>\(5\cdot\dfrac{3\sqrt{x-3}}{5}-7\cdot\dfrac{2\sqrt{x-3}}{3}-7\cdot\sqrt{x^2-9}+18\cdot\sqrt{\dfrac{9}{81}\left(x^2-9\right)}=0\)

=>\(3\cdot\sqrt{x-3}-\dfrac{14}{3}\sqrt{x-3}=7\cdot\sqrt{x^2-9}-18\cdot\dfrac{3}{9}\cdot\sqrt{x^2-9}\)

=>\(-\dfrac{5}{3}\sqrt{x-3}=\sqrt{x^2-9}\)

=>\(\sqrt{x-3}\left(\sqrt{x+3}+\dfrac{5}{3}\right)=0\)

=>x-3=0

=>x=3

Bình luận (0)
NP
Xem chi tiết
AN
3 tháng 8 2016 lúc 15:44
Đặt √(x-1) = t rồi giải bình thường là ra
Bình luận (0)
TL
Xem chi tiết
TM
21 tháng 10 2017 lúc 18:11

bài 2

ta có \(\left(\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\right)^2\)

\(=\left(\sqrt{a}.\sqrt{\frac{8a^2+1}{a}}+\sqrt{b}.\sqrt{\frac{8b^2+1}{b}}+\sqrt{c}.\sqrt{\frac{8c^2+1}{c}}\right)^2\)\(=\left(A\right)\)

Áp dụng bất đẳng thức Bunhiacopxki ta có;

\(\left(A\right)\le\left(a+b+c\right)\left(8a+\frac{1}{a}+8b+\frac{1}{b}+8c+\frac{8}{c}\right)\)

\(=\left(a+b+c\right)\left(9a+9b+9c\right)=9\left(a+b+c\right)^2\)

\(\Rightarrow3\left(a+b+c\right)\ge\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\)(đpcm)

Dấu \(=\)xảy ra khi \(a=b=c=1\)

Bình luận (0)
VC
21 tháng 10 2017 lúc 20:04

câu 1 dễ mà liên hợp đi x=\(\frac{4}{5}\)

Bình luận (0)
H24
22 tháng 10 2017 lúc 20:58

câu hình 

ad bđt svacso

\(\frac{1}{h_a}+\frac{1}{h_b}+\frac{1}{h_b}\ge\frac{9}{h_a+2h_b}\)

tt vs mấy cái còn lại rồi dùng S=p.r

Bình luận (0)
LA
Xem chi tiết
H24
12 tháng 7 2020 lúc 8:09

Bạn vào link này để xem bài làm của mik nha

large_1594515830440.jpg (768×1024)

Bình luận (0)
 Khách vãng lai đã xóa
H24
12 tháng 7 2020 lúc 8:09

Mik ko gửi đc link , ib riêng nhé

Bình luận (0)
 Khách vãng lai đã xóa
NC
13 tháng 7 2020 lúc 16:58

Câu 1: 

ĐK: x  khác 0 

TH1: x > 0 

\(\frac{x}{\sqrt{x^2+1}}+\frac{1}{2x^2}=2\)

<=> \(\frac{1}{\sqrt{1+\frac{1}{x^2}}}+\frac{1}{2x^2}=2\)

Đặt: \(\sqrt{1+\frac{1}{x^2}}=t>1\)ta có phương trình: 

\(\frac{1}{t}+\frac{t^2-1}{2}=2\)

<=> \(t^3-5t+2=0\)

<=> \(\)\(t=2\) (  có 3 nghiệm; loại 2 nghiệm vì  t > 1 ) 

Với t = 2 ta có: \(\sqrt{1+\frac{1}{x^2}}=2\Leftrightarrow\frac{1}{x^2}=3\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{\sqrt{3}}\left(tm\right)\\x=-\frac{1}{\sqrt{3}}\left(l\right)\end{cases}}\)

TH2: x < 0 

\(\frac{x}{\sqrt{x^2+1}}+\frac{1}{2x^2}=2\)

<=> \(\frac{-1}{\sqrt{1+\frac{1}{x^2}}}+\frac{1}{2x^2}=2\)

Đặt: \(\sqrt{1+\frac{1}{x^2}}=t>1\)

Ta có phương trình: \(-\frac{1}{t}+\frac{t^2-1}{2}=2\)<=> \(t=1+\sqrt{2}\)

khi đó: \(\sqrt{1+\frac{1}{x^2}}=1+\sqrt{2}\)

<=> \(1+\frac{1}{x^2}=1+2\sqrt{2}+2\)

<=> \(x^2=\frac{1}{2\sqrt{2}+2}\)

<=> \(x=-\sqrt{\frac{1}{2\sqrt{2}+2}}\)( thỏa mãn) hoặc \(x=\sqrt{\frac{1}{2\sqrt{2}+2}}\) loại 

Kết luận:...

Bình luận (0)
 Khách vãng lai đã xóa
MK
Xem chi tiết
GG
2 tháng 7 2019 lúc 19:11

a) \(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}}=-17\)

<=> \(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9\left(x-1\right)}+24\frac{\sqrt{x-1}}{\sqrt{64}}=-17\)

<=>\(\frac{1}{2}\sqrt{x-1}-\frac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)

<=>\(\sqrt{x-1}\left(\frac{1}{2}-\frac{9}{2}+\frac{6}{2}\right)=-17\)

<=>\(\sqrt{x-1}=-17\)

<=>x-1=17

<=>x=18

Vậy pt có nghiệm là x=18

Bình luận (0)
KH
2 tháng 7 2019 lúc 19:12

\(a.ĐK:x-1\ge0\Leftrightarrow x\ge1\)

\(\frac{1}{2}\sqrt{x-1}-\frac{3}{2}\sqrt{9x-9}+24\sqrt{\frac{x-1}{64}}=-17\)

\(\Leftrightarrow\frac{1}{2}\sqrt{x-1}-\frac{27}{2}\sqrt{x-1}+24\sqrt{\frac{x-1}{64}}=-17\)

\(\Leftrightarrow\sqrt{x-1}\left(\frac{1}{2}-\frac{27}{2}+24\sqrt{\frac{1}{64}}\right)=-17\)

\(\Leftrightarrow\sqrt{x-1}.\left(-10\right)=-17\)

\(\Leftrightarrow\sqrt{x-1}=\frac{-17}{-10}=\frac{17}{10}\)

\(\Leftrightarrow x-1=\left(\frac{17}{10}\right)^2\)

\(\Leftrightarrow x=\frac{289}{100}+1=3,89\left(TM\right)\)

Vậy \(S=\left\{3,89\right\}\)

\(b.ĐK:x^2+2\ge0\)

\(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)

\(\Leftrightarrow9\sqrt{x^2+2}+2\sqrt{x^2+2}-25\sqrt{x^2+2}=-3\)

\(\Leftrightarrow\sqrt{x^2+2}\left(9+2-25\right)=-3\)

\(\Leftrightarrow\sqrt{x^2+2}=\frac{-3}{-14}=\frac{3}{14}\)

\(\Leftrightarrow x^2+2=\left(\frac{3}{14}\right)^2\)

\(\Leftrightarrow x=\sqrt{\frac{9}{196}-2}=\sqrt{-\frac{383}{196}}\left(vl\right)\)

Vậy \(S=\varnothing\)

Mấy câu kia làm tương tự

Bình luận (0)
GG
2 tháng 7 2019 lúc 19:23

b)\(\sqrt{9x^2+18}+2\sqrt{x^2+2}-\sqrt{25x^2+50}+3=0\)

<=>\(\sqrt{9\left(x^2+2\right)}+2\sqrt{x^2+2}-\sqrt{25\left(x^2+2\right)}+3=0\)

<=>\(3\sqrt{x^2+2}+2\sqrt{x^2+2}-5\sqrt{x^2+2}+3=0\)

<=>\(\sqrt{x^2+2}\left(3+2-5\right)=-3\)

<=>0x=-3

Vậy pt vô nghiệm

Bình luận (0)
NV
Xem chi tiết
DT
4 tháng 2 2016 lúc 13:38

ĐK: x>0

Đặt a=1/x ta được: a>0

\(a+\frac{1}{3}=\sqrt{\frac{1}{9}+a\sqrt{\frac{4}{9}+2a^2}}\)

\(\Leftrightarrow a^2+\frac{1}{9}+\frac{2}{3}a=\frac{1}{9}+a\sqrt{\frac{4}{9}+2a^2}\)

<=>\(a^2+\frac{2}{3}a=a\sqrt{\frac{4}{9}+2a^2}\)

<=>\(a.\left(a+\frac{2}{3}\right)=a\sqrt{\frac{4}{9}+2a^2}\)

<=>\(a+\frac{2}{3}=\sqrt{\frac{4}{9}+2a^2}\)

<=>\(a^2+\frac{4}{9}+\frac{4}{3}a=\frac{4}{9}+2a^2\)

<=>\(a^2-\frac{4}{3}a=0\Leftrightarrow a=0\left(loại\right);a=\frac{4}{3}\)

<=>\(x=\frac{3}{4}\)(loại -3/2)

Vậy x=3/4

Bình luận (0)
TL
Xem chi tiết