Cho A=11^9+11^8+......+11+1(CMR A chia hết cho 5)
Cho A= 11^9 + 11^8 + 11^7 + .... + 11+1. CMR A chia hết cho 5
bạn vô đây Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
ai kết bạn đi
1. CMR : A = 13!-11! chia hết cho 155
2. Tìm n thuộc N sao cho (3n+1) chia hết cho (11+ 2n)
3. CMR C = 11^9 + 11^8 + 11^7 +...+11^0 chia hết cho 5
4. Tìm số tn chia 8 dư 3, chia 125 dư 12
Ta có :
A = 13! - 11! = 11! . 12 . 13 - 11! = 11! . (12 . 13 - 1) = 11! . 155 chia hết cho 155
Cho A=119+118+117+.....+11+1.CMR A chia hết cho 5
câu hỏi tương tự có nhiều dạng này lắm bạn ạ
a) A=7^10+7^9-7^8. CMR:A chia hết cho 11 b)B=11^5+11^4+11^3. CMR B chia hết cho 7
a) Ta có A = 710 + 79 - 78
= 78( 72 + 7 - 1 )
= 78 . 55 ⋮ 11 vì 55 ⋮ 11
Vậy A ⋮ 11
b) Ta có B = 115 + 114 + 113
= 113( 112 + 11 + 1 )
= 113 . 133 ⋮ 7
Vậy B ⋮ 7
a,A=710+79-78=78(72+7-1)=78x55 ⋮11 vì 55⋮11
b,115+114+113=113(112+11+1)=113x133⋮7 vì 133⋮7
a) Ta có A = 710 + 79 - 78
= 78( 72 + 7 - 1 )
= 78 . 55 ⋮ 11 vì 55 ⋮ 11
Vậy A ⋮ 11
b) Ta có B = 115 + 114 + 113
= 113( 112 + 11 + 1 )
= 113 . 133 ⋮ 7
Vậy B ⋮ 7
A=\(11^9+11^8+..........+11+1\)
CMR A chia hết cho 5
A = 119 + 118 + ... + 11 + 1
A = 119 + 118 + ... + 111 + 110
Dễ thấy: A là tổng của của 10 số hạng, mỗi số hạng là lũy thừa của 11 nên đều có tận cùng là 1
=> A có tận cùng là 0, chia hết cho 5 (đpcm)
CMR mọi n thuộc N
(n+3) x (n+6) chia hết cho 2
CMR
A= 11^9 + 11^8 +...+ 11 + 1 chia hết cho 5
Mk chỉ bt lm phần trên thôi nha :)
Xét thừa số (n+3) ta thấy: 3 là số tự nhiên lẻ (1)
Lại có trong thừa số (n+6): 6 là số tự nhiên chẵn(2)
Mà số tự nhiên chia hết cho 2 là số tự nhiên chẵn và trong 1 tích chỉ cần 1 thừa số là số chẵn => tích đó chẵn.(3)
Từ (1) (2) và (3): (n+3)x(n+6) luôn là số chẵn hay chia hết cho 2 với mọi n thuộc N
CÂu 1: A=1+11+11^2++11^3+11^4+...+11^9
CMR:
A chia hết cho 60
Câu 2: Cho A = 13!-1!
CMR: A chi hết cho 5, A chia hết cho 155
A=\(11^9+11^8+...........+11+1\)\(+1\)
CMR A chia hết cho 5
A=119+118+...........+11+1+1
vì các số trong tổng 119+118+...........+11+1 +1 đều có số tận cùng là 1
các số hạng đều có tận cùng là 1
=>119+118+...........+11 có tận cùng là 9
=> A có tận cùng là 1 => không chia hết cho 5
=> đề sai hoạc ghi nhầm đề đề có thể là
119+118+...........+11+1
giải:
vì các số trong tổng 119+118+...........+11+1 đều có số tận cùng là 1
các số hạng đều có tận cùng là 1
=>119+118+...........+11 có tận cùng là 9
9+1=10 => A có tận cùng là 0 => chia hết cho 5
cmr:11^9+11^8+11^7+...+11 chia hết cho 5