cho A {13;17;21;25.....;253}
gọi số thứ nhất là 13 số thứ 2 là 17 theo thứ tự đó thì số hạng thứ 25 là số nào?
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho A = 13+13^2+13^3+13^4+...............+13^99+13^100 . Chứng minh rằng A chia hết cho 182
A=(13+132)+(133+134)+.......................+(1399+13100)
A=1.(13+132)+132.(13+132)+..............+1398.(13+132)
A=1.182+132.182+..........................+1398.182
A+182.(1+132+..............+1398) Chia hết cho 182
--> A chia hết cho 182
cho a,b thuộc N; a^2+b^2 chia hết cho 13. CMR: a chia hết cho 13, b chia hết cho 13
a^2 + b^2 chia hết cho 13
=) a + b chia hết cho 13
vì a + b chia hết cho 13 nên a chia hết cho 13 , b chia hết cho 13
Vậy đó !
Cho A= \(^{^{13+13^2+13^3+13^4+13^5+13^6}}\). Chứng tỏ rằng A chia hết cho 2
Ta có: \(A=\left(13+13^2\right)+\left(13^3+13^4\right)+\left(13^5+13^6\right)\)
\(=13\left(13+1\right)+13^3\left(13+1\right)+13^5\left(13+1\right)\)
\(=14\left(13+13^3+13^5\right)\)
\(=2.7.\left(13+13^3+13^5\right)\) chia hết cho 2
a. Cho a+5b chia hết cho 17. cmr: 10a-b chia hết cho 17
b. a+4b chia hết cho 13 .cmr: 10a +b chia hết ch 13.
c. 10a +b chia hết cho 13. cmr: a+4b chia hết cho 13
cho các biểu thức : A=11x+29y và B=2x-3y. Chứng minh rằng nếu x,y là số nguyên và A chia hết cho 13 thì B chia hết cho 13. Ngược lại nếu B chia hết cho 13 thì A chia hết cho 13
A chia hết cho 13
A+B=11x+29y+2x-3y=13x-26y chia hết cho 13
=>B chia hết cho 13
B chia hết cho 13
A+B chia hết cho 13
=>A chia hết cho 13
Cho A = 13 + 132 + 133 + 134 + ... + 1360 . Chứng minh rằng A chia hết cho 3 , 7 ,61
Cho biểu thức:
A= 15x-23y
B= 2x+3y
CMR: nếu A chia hết cho 13 thì B cũng chia hết cho 13 và ngược lại B chia hết cho 13 thì A cũng chia hết cho 13 ( với x, y thuộc Z)
x,y thuộc Z
A= (13+2)x -(26-3)y = 13x + 2x -26y + 3y =13(x-2y) + (2x+3y) = 13(x-2y) + B
A chia hết 13 => (2x+3y) chia hết 13 vì 13(x-2y) chắc chắn chia hết 13=> B chia hết 13
ngược lại cũng đúng.
Bài làm: ( Toán lớp 6 ).
x , y đều thuộc Z.
A = ( 13 + 2 )x - ( 26 - 3)y.
= 13x + 2x - 26y + 3y.
= 13( x - 2y ) + ( 2x + 3y ) = 13 ( x - 2y ) + B.
Vì A chia hết cho 13.
Suy ra: ( 2x + 3y ) : 13.
Vì 13( x - 2y ) : 13.
Suy ra: B chia hết cho 13.
Học tốt #
Cho a,b thuộc Z.Chứng minh rằng:Nếu 2a+b chia hết cho 13 và 5a-4b chia hết cho 13 thì a-6b chia hết cho 13?
2a+b+5a-4b= 7a-3b
ta có 7a-3b chia hết cho 13=>2(7a-3b)chia hết cho 13
=> 14a-6b=13a+a-6b chia hết cho 13
mà 13a chia hết cho 13
=>a-6b chia hết cho 13(đpcm)
Có 2a+b chia hết cho 13 nên 2(2a+b) chia hết cho 13 hay 4a+2b chia hết cho 13 (1)
Mà 5a-4b cũng chia hết cho 13 (2) nên hiệu của (2) trừ đi (1) cũng chia hết cho 13
tức là (5a-4b)-(4a+2b)=5a-4b-4a-2b=a-6b chia hết cho 13
Cho a và b là các số nguyên.Chứng minh rằng
Nếu 2a+b chia hết cho 13 và 5a-4b chia hết cho 13 thì a-6b chia hết cho 13
Giả sử \(\left(a-6b\right)⋮b\)
Ta có: \(\hept{\begin{cases}\left(2a+b\right)⋮13\left(1\right)\\\left(5a-4b\right)⋮13\Rightarrow\left(10a-8b\right)⋮13\left(2\right)\\\left(a-6b\right)⋮13\left(3\right)\end{cases}}\)
Cộng (1),(2),(3) vế với vế:
\(\left[\left(2a+b\right)+\left(10a-8b\right)+\left(a-6b\right)\right]⋮13\)
\(\Rightarrow\left(2a+b+10a-8b+a-6b\right)⋮13\)
\(\Rightarrow\left[\left(2a+10a+a\right)+\left(b-8b-6b\right)\right]⋮13\)
\(\Rightarrow\left(13a-13b\right)⋮13\)
\(\Rightarrow13\left(a-b\right)⋮13\)(đúng)
=> Giả sử đúng
Vậy...
Cho a;b là các số nguyên:
2a+b chia hết cho 13
5a-4b chia hết cho 13
chứng minh a-6b chia hết cho 13