Những câu hỏi liên quan
TT
Xem chi tiết
VN
Xem chi tiết
TN
Xem chi tiết
NM
20 tháng 7 2023 lúc 8:44

Bài 2:

\(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)

\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}=\dfrac{a+b+a-b}{c+a+c-a}=\dfrac{a}{c}\) (T/c dãy tỷ số = nhau)

\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a}{c}\Rightarrow c\left(a+b\right)=a\left(c+a\right)\)

\(\Rightarrow ac+bc=ac+a^2\Rightarrow a^2=bc\)

Bình luận (0)
VN
8 tháng 12 2024 lúc 16:31

a) x=949/27
    y=755/27
    z=61/9
    các bạn xem giúp mik đúng chx ạ, mik đặt là k

Bình luận (0)
HG
Xem chi tiết
TP
16 tháng 8 2017 lúc 9:46

SORY I'M I GRADE 6

Bình luận (2)
LD
3 tháng 5 2018 lúc 9:24

????????

Bình luận (0)
NK
19 tháng 5 2020 lúc 19:31

mày hỏi vả bài kiểm tra à thằng điên 

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
KR
25 tháng 6 2023 lúc 21:21

`@` `\text {Ans}`

`\downarrow`

`1,`

\((y-5)(y+8)-(y+4)(y-1)\)

`= y(y+8) - 5(y+8) - [y(y-1) + 4(y-1)]`

`= y^2+8y - 5y - 40 - (y^2-y + 4y - 4)`

`= y^2+8y-5y-40 - y^2+y-4y+4`

`= (y^2-y^2)+(8y-5y+y-4y) +(-40+4)`

`= -36`

Vậy, bt trên không phụ thuộc vào gtr của biến.

`2,`

\(y^4-(y^2+1)(y^2-1)\)

`= y^4 - [y^2(y^2-1)+y^2-1]`

`= y^4- (y^4-y^2 + y^2-1)`

`= y^4-(y^4-1)`

`= y^4-y^4+1`

`= 1`

Vậy, bt trên không phụ thuộc vào gtr của biến.

`3,`

\(x(y-z) + y(z-x) +z(x-y)\)

`= xy-xz + yz - yx + zx-zy`

`= (xy-yx) + (-xz+zx) + (yz-zy)`

`= 0`

Vậy, bt trên không phụ thuộc vào gtr của biến.

`4,`

\(x(y+z-yz) -y(z+x-xz)+z(y-x)\)

`= xy+xz-xyz - yz - yx + yxz + zy - zx`

`= (xy-yx)+(xz-zx)+(-xyz+yxz)+(-yz+zy)`

`= 0`

Vậy, bt trên không phụ thuộc vào gtr của biến.

`5,`

\(x(2x+1)-x^2(x+2)+x^3-x+3\)

`= 2x^2+x - x^3 - 2x^2 + x^3 - x + 3`

`= (2x^2-2x^2)+(-x^3+x^3)+(x-x)+3`

`= 3`

Vậy, bt trên không phụ thuộc vào gtr của biến.

`6,`

\(x(3x-x+5)-(2x^3+3x-16)-x(x^2-x+2)\)

`= 3x^2 - x^2 + 5x - 2x^3 - 3x + 16 - x^3 + x^2 - 2x`

`= -3x^3 + 3x^2 + 16`

Bạn xem lại đề bài.

`\text {#KaizuulvG}`

Bình luận (0)
H24
Xem chi tiết
NT
23 tháng 10 2015 lúc 11:44

câu hỏi tương tự nhé !

Đúng 3 cho mình nhé các bạn !

Bình luận (0)
V3
23 tháng 10 2015 lúc 11:51

câu hỏi tương tự

Bình luận (0)
TT
Xem chi tiết
HF
29 tháng 7 2020 lúc 19:19

1/

\(P=\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}=\frac{2}{xy+yz+xz}+\frac{1}{xy+yx+xz}+\frac{2}{x^2+y^2+z^2}\)\

\(\ge\frac{2}{\frac{\left(x+y+z\right)^2}{3}}+\frac{\left(2\sqrt{2}\right)^2}{\left(x+y+z\right)^2}=14\)

Ta thấy dấu bằng xảy ra khi \(\hept{\begin{cases}x=y=z=\frac{1}{3}\\\frac{1}{xy+yz+xz}=\frac{\sqrt{2}}{x^2+y^2+z^2}\end{cases}}\) 

Hai điều kiện không thể đồng thời xảy ra nên không tồn tại dấu bằng. Vậy P > 14

Bình luận (0)
 Khách vãng lai đã xóa
TL
29 tháng 7 2020 lúc 19:32

1) vì x,y,z là các số bất kì, ta có bđt luôn đúng: (x+y+z)2 \(\ge\)3(xy+yz+zx)

vì x+y+z=1 nên suy ra \(\frac{1}{xy+yz+zx}\ge3\)

đẳng thức xảy ra khi và chỉ khi \(x=y=z=\frac{1}{3}\)

ta có \(\frac{1}{3\left(xy+yz+zx\right)}+\frac{1}{x^2+y^2+z^2}\ge\frac{4}{\left(x+y+z\right)^3}=4\)

\(\Rightarrow\frac{3}{xy+yz+zx}+\frac{2}{x^2+y^2+z^2}=\frac{4}{2\left(xy+yz+zx\right)}+\frac{2}{2\left(xy+yz+zx\right)}+\frac{2}{x^2+y^2+z^2}\)\(\ge2\cdot3+2\cdot4=14\)

đẳng thức xảy ra khi và chỉ khi \(\hept{\begin{cases}x=y=z=\frac{1}{3}\\2\left(xy+yz+zx\right)=x^2+y^2+z^2\end{cases}}\)

hệ này vô nghiệm nên bât không trở thành đẳng thức

vậy bất đẳng thức được chứng minh

2) ta có \(\frac{x^3}{y^3+8}+\frac{y+2}{27}+\frac{y^2-2y+4}{27}\ge\frac{x}{3}\Rightarrow\frac{x^3}{y^3+8}\ge\frac{9x+y-y^2-6}{27}\)

tương tự ta có: \(\frac{y^3}{z^3+8}\ge\frac{9y+z-z^2-6}{27},\frac{z^3}{x^3+8}\ge\frac{9z+x-x^2-6}{27}\)nên

\(VT\ge\frac{10\left(x+y+z\right)-\left(x^2+y^2+z^2\right)-18}{27}=\frac{12-\left(x^2+y^2+z^2\right)}{27}\)mà ta lại có 

\(\frac{12-\left(x^2+y^2+z^2\right)27}{27}=\frac{3+\left(x+y+z\right)^2-\left(x^2+y^2+z^2\right)}{27}=\frac{1}{9}+\frac{2}{27}\left(xy+yz+zx\right)\)

từ đó ta có điều phải chứng minh, đẳng thức xảy ra khi x=y=z=1

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
ND
26 tháng 6 2023 lúc 20:06

Bạn cần phần nào thì mình sẽ giúp đỡ . Chứ bạn nhắn nhiều bài mình không giải được á . Chứ còn dạng bài như này thì hầu hết bạn đều phải nhân bung ra rồi rút gọn đi á .

Bình luận (0)
BL
26 tháng 6 2023 lúc 20:44

muốn rối cái não bạn nhắn một lượt mình đọc không hiểu bạn nhắn từng câu thôi

Bình luận (0)
T2
Xem chi tiết