x-1/y -4/xy =-1
Giải hệ (x+y)(1+1/xy)=4 và xy+1/xy +(x^2+y^2)/xy=4
rút gọn
1, 1/7 x^2 y^3 ( -14/3 xy^2 ) -1/2 xy ( x^2 y^4 )
2, ( 3xy )^2 ( -1/2 x^3 y^2 )
3) ( -1/4 x^2 y )^2 ( 2/3 xy^4)^3
1) Ta có: \(\dfrac{1}{7}x^2y^3\cdot\left(-\dfrac{14}{3}xy^2\right)\cdot\left(-\dfrac{1}{2}xy\right)\left(x^2y^4\right)\)
\(=\left(-\dfrac{1}{7}\cdot\dfrac{14}{3}\cdot\dfrac{-1}{2}\right)\left(x^2y^3\cdot xy^2\cdot xy\cdot x^2y^4\right)\)
\(=\dfrac{1}{3}x^6y^{10}\)
2) Ta có: \(\left(3xy\right)^2\cdot\left(-\dfrac{1}{2}x^3y^2\right)\)
\(=9xy^2\cdot\dfrac{-1}{2}x^3y^2\)
\(=-\dfrac{9}{2}x^4y^4\)
3) Ta có: \(\left(-\dfrac{1}{4}x^2y\right)^2\cdot\left(\dfrac{2}{3}xy^4\right)^3\)
\(=\dfrac{1}{16}x^4y^2\cdot\dfrac{8}{27}x^3y^{12}\)
\(=\dfrac{1}{54}x^7y^{14}\)
ta có \(A=\frac{1}{x^3+y^3}+\frac{4}{xy}=\frac{1}{\left(x+y\right)\left(x^2-xy+y^2\right)}+\frac{4}{xy}=\frac{1}{x^2-xy+y^2}+\frac{1}{xy}+\frac{1}{xy}+\frac{1}{xy}+\frac{1}{xy}\)
áp dụng bất đẳng thức svác sơ ta có
\(\frac{1}{x^2-xy+y^2}+\frac{1}{xy}+\frac{1}{xy}+\frac{1}{xy}\ge\frac{16}{x^2+y^2+2xy}=16\)
mà \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
=> \(\frac{1}{xy}\ge4\)
=> \(A\ge20\)
dấu = xảy ra <=> x=y=1/2
câu 1 bình phg chuyển vế cậu sẽ thấy điều kì diệu
câu 2 adbđt \(8\sqrt[4]{4x+4}=4\sqrt[4]{4.4.4\left(x+1\right)}\le x+13\)
Bài 8: Phân tích đa thức sau thành nhân tử
1)(x+y)^2-9x^2
2)(3x-1)^2-16
3)4x^2-(x^2+1)^2
4)(2x+1)^2 -(x-1)^2
5)(x+1)^4 - (x-1)^4
6)25(x-y)^2 - 16(x+y)^2
7) (x^2+xy)^2 - (y^2 + xy)^2
8)(x^2 +4y^2-20)^2 -16(xy-4)^2
1: =(x+y-3x)(x+y+3x)
=(-2x+y)(4x+y)
2: =(3x-1-4)(3x-1+4)
=(3x+3)(3x-5)
=3(x+1)(3x-5)
3: =(2x)^2-(x^2+1)^2
=-[(x^2+1)^2-(2x)^2]
=-(x^2+1-2x)(x^2+1+2x)
=-(x-1)^2(x+1)^2
4: =(2x+1+x-1)(2x+1-x+1)
=3x(x+2)
5: =[(x+1)^2-(x-1)^2][(x+1)^2+(x-1)^2]
=(2x^2+2)*4x
=8x(x^2+1)
6: =(5x-5y)^2-(4x+4y)^2
=(5x-5y-4x-4y)(5x-5y+4x+4y)
=(x-9y)(9x-y)
7: =(x^2+xy+y^2+xy)(x^2+xy-y^2-xy)
=(x^2+2xy+y^2)(x^2-y^2)
=(x+y)^3*(x-y)
8: =(x^2+4y^2-20-4xy+16)(x^2+4y^2-20+4xy-16)
=[(x-2y)^2-4][(x+2y)^2-36]
=(x-2y-2)(x-2y+2)(x+2y-6)(x+2y+6)
Tìm x, y thuộc N biết
a, x + y + xy = 2
b, x - y + xy = 4
c, x + y - xy = -1
d,-x +y +xy = -1
\(\left\{{}\begin{matrix}\left(x+y\right)\left(1+\dfrac{1}{xy}\right)=4\\xy+\dfrac{1}{xy}+\dfrac{x^2+y^2}{xy}=4\end{matrix}\right.\)
1)\(\hept{\begin{cases}\left(x+y\right)\left(1+\frac{1}{xy}\right)=4\\xy+\frac{1}{xy}+\frac{\left(x^2+y^2\right)}{xy}=4\end{cases}}\)
2)\(\hept{\begin{cases}4xy+4\left(x^2+y^2\right)+\frac{3}{\left(x+y\right)^2}=7\\2x+\frac{1}{x+y}=3\end{cases}}\)
sử dụng bất đẳng thức đối với pt2 he 1
pt 2<=>\(xy+\frac{1}{xy}+\frac{x}{y}+\frac{y}{x}=4\)
áp dụng bdt cô si ta dễ dàng chứng minh được VT>=4. dau = xay ra <=>x=y=1
nhưng x,y có không âm đâu mà được phép áp dụng cosi
khong su dung co si thi su dung bunhiacopxi
cho cac so thuc x,y thoa man 1/x^2+4+1/y^2+4=2/xy+4.Tinh gia triP=1/x^2y^2+4+4/xy+4
còn on ko bn
vx on,dag doi bai
giai hpt:
x+y+1/x+1/y=9/2
1/4+3/2(x+1/y)=xy+1/xy
giải hpt: (x+y)(1+1/xy)=4
{
xy + 1/xy = 2