Tìm x,y thuộc N biết:
a. 4x+5y = 76
b. 4x + 9y=45
Tìm x,y biết:
a)3x - y = 13 và 2x + 4y = 60
b)5x + 2y = 69 và 4x = 3y
c)4x - 3y = 42 và 2x = 5y
a) Ta có: \(3x-y=13\) và \(2x-4y=60\)
Mà: \(2\left(x+2y\right)=60\Rightarrow x+2y=30\) (1)
Và: \(3x-y=13\Rightarrow6x-2y=26\) (2)
Cộng (1) với (2) theo vế ta có:
\(\left(x+6x\right)+\left(-2y+2y\right)=30+26\)
\(\Rightarrow7x=56\)
\(\Rightarrow x=8\)
Ta tìm được y:
\(8+2y=30\)
\(\Rightarrow2y=22\)
\(\Rightarrow y=11\)
b) Ta có: \(5x+2y=69\) và \(4x=3y\Rightarrow4x-3y=0\)
Mà: \(5x+2y=69\Rightarrow15x+6y=207\) (1)
\(4x-3y=0\Rightarrow8x-6y=0\) (2)
Cộng (1) và (2) theo vế ta có:
\(\left(15x+8x\right)+\left(6y-6y\right)=207+0\)
\(\Rightarrow23x=207\)
\(\Rightarrow x=\dfrac{207}{23}\)
\(\Rightarrow x=9\)
Ta tìm được y:
\(4\cdot9=3\cdot y\)
\(\Rightarrow3y=36\)
\(\Rightarrow y=\dfrac{36}{3}\)
\(\Rightarrow y=12\)
Tìm x,y thuộc N, biết:
4x + 5y = 76
4x= 76 - 5y
4x=76-5y
Vì 4x chia hết cho 4,76 chia hết cho4.
suy ra 5y chia hết cho 4.
Tìm xy biết:a,2x2 +2x+y2+2xy+1=0
b,x2+y2+4x+9y+13=0
Tìm x,y thuộc N biết
4x+5y=65
x= 5 ; y = 9
đúng 100000000000000% luôn , chúc bạn học tốt nhé
Bạn giải chi tiết hộ mk chứ kết quả mình cx biết rồi
4x + 5y = 65
để tổng trên bằng 65 thì x = 5 ( vì 4*5 = 20 )
thay x bằng 4 vào tổng trên ta được
4*5 + 5y = 65
=> 5y = 65-20=45
=> y = 45/5 = 9
dễ mà bạn chúc bạn học tốt nhé ^_^
tìm x,y,z thuộc N biết xy=z; yz=4x; zx=9y (trong 1 câu nha)
=> (xy).(yz).(zx) = z. (4x).(9y)
=> (xyz)2 = 36.(xyz)
=> (xyz)2 - 36.(xyz) = 0
=> (xyz).(xyz - 36) = 0
=> xyz = 0 hoặc xyz - 36 = 0
+) xyz = 0 .kết hợp bài cho => x = y = z = 0
+) xyz - 36 = 0 => xyz = 36 mà xy = z nên z.z = 36 => z = 6
Ta có yz = 4x => xyz = x.4x = 36 => x.x = 9 => x = 3
=> y = 36 : xz = 36 : 18 = 2
Vậy....
Tìm số tự nhiên x,y biết:
a, 4x+9y=45
b, 5x+15y=124
c,3x+9y=29
a) ta có: 4x+9y=45
=> 4x=45-9y
=> 4x=9.(5-y)
ta thấy: 4x chia hết cho 4 =>9.(5-y) cũng phải chia hết cho 4
mà ƯCLN(4,9)=1 =>5-y phải chia hết cho 4 =>5-y thuộc Ư(4)
ta có Ư(4)={0;4;8;12;.....}
vì y là số tự nhiên => 5-y=0 hoặc 5-y=4
=>y=5 hoặc y=1
+) 5-y=0 =>9.(5-y)=9.0=0 =>4x=0 =>x=0:4=0
+) 5-y=4 =>9.(5-y)=9.4=36 =>4x=36 =>x=9
Vậy (x;y)=(0;5);(9;1)
Thomas Lê phải ghi là B(4),ko phải Ư(4)
Tìm GTNN của :
A=7x2 +4x
B=4x2 +y2 -4x+4y+5
C=x2 - 2xy + 9y2 + 2x - 5y + 1
Tìm GTLN của :
D= -6x2 -4x+3
Tìm x , y biết :
a, 3x = 5y và xy = 60
b, 4x = 5y và x2 - y2 = 9
c, x : 3 = y : 7 và xy = 21
d, 2x = 9y và xy = 72
\(a,3x=5y\)và \(xy=60\)
\(3x=5y\)
\(\Leftrightarrow\frac{x}{5}=\frac{y}{3}\)
\(\Leftrightarrow\frac{x^2}{25}=\frac{xy}{15}=\frac{y^2}{9}\)
\(\Leftrightarrow\frac{x^2}{25}=\frac{y^2}{9}=\frac{60}{15}=4\)
\(\Rightarrow\hept{\begin{cases}\frac{x^2}{25}=4\\\frac{y^2}{9}=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=100\\y^2=36\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm10\\y=\pm6\end{cases}}\)
Vậy \(\left(x,y\right)\in\left\{\left(-10,-6\right);\left(10,6\right)\right\}\)
\(b,4x=5y\)và \(x^2-y^2=9\)
\(4x=5y\)
\(\Leftrightarrow\frac{x}{5}=\frac{y}{4}\)
\(\Leftrightarrow\frac{x^2}{25}=\frac{y^2}{16}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{25}=\frac{y^2}{16}=\frac{x^2-y^2}{25-16}=\frac{9}{9}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{x^2}{25}=1\\\frac{y^2}{16}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=25\\y^2=16\end{cases}\Leftrightarrow\hept{\begin{cases}x=\pm5\\y=\pm4\end{cases}}}\)
Vậy \(\left(x,y\right)\in\left\{\left(-5,-4\right);\left(5,4\right)\right\}\)
\(c,x:3=y:7\)và xy = 21
\(x:3=y:7\)
\(\Leftrightarrow\frac{x}{3}=\frac{y}{7}\)
\(\Leftrightarrow\frac{x^2}{9}=\frac{xy}{21}=\frac{y^2}{49}\)
\(\Leftrightarrow\frac{x^2}{9}=\frac{y^2}{49}=\frac{21}{21}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{x^2}{9}=1\\\frac{y^2}{49}=1\end{cases}\Leftrightarrow\hept{\begin{cases}x^2=9\\y^2=49\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\pm3\\y=\pm7\end{cases}}}\)
Vậy \(\left(x,y\right)\in\left\{\left(-3,-7\right);\left(3,7\right)\right\}\)
\(d,2x=9y\)và xy = 72
\(2x=9y\)
\(\Leftrightarrow\frac{x}{9}=\frac{y}{2}\)
\(\Leftrightarrow\frac{x^2}{81}=\frac{xy}{18}=\frac{y^2}{4}\)
\(\Leftrightarrow\frac{x^2}{81}=\frac{y^2}{4}=\frac{72}{18}=4\)
\(\Rightarrow\hept{\begin{cases}\frac{x^2}{81}=4\\\frac{y^2}{4}=4\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=324\\y^2=16\end{cases}\Leftrightarrow\hept{\begin{cases}x=\pm18\\y=\pm4\end{cases}}}\)
Vậy \(\left(x,y\right)\in\left\{\left(-18,-4\right);\left(18,4\right)\right\}\)
Tìm n thuộc N để —7x^n+1.y: 4x^5y^n