x3+1=x(x+1)
Thực hiện phép tính g) (x + 2)(1 + x - x2 + x3 - x4) - (1 - x)(1 + x +x2 + x3 + x4); a) (x + 1)(1 + x - x2 + x3 - x4) - (x - 1)(1 + x + x2 + x3 + x4); b) ( 2b2 - 2 - 5b + 6b3)(3 + 3b2 - b); c) (4a - 4a4 + 2a7)(6a2 - 12 - 3a3); d) (2ab + 2a2 + b2)(2ab2 + 4a3 - 4a2b) e) (2a3 - 0,02a + 0,4a5)(0,5a6 - 0,1a2 + 0,03a4).
\(a,=x+x^2-x^3+x^4-x^5+1+x-x^2+x^3-x^4-x-x^2+x^3-x^4+x^5+1+x-x^2+x^3-x^4\\ =2x-2x^2+2x^3-2x^4\)
giải các phương trình sau:
a)(√x+1+1)3+2√x−1=2−x(x+1+1)3+2x−1=2−x
b)x3=x4+x3+x2+x+2x3=x4+x3+x2+x+2
c)2(x2+x+1)2−7(x−1)2=13(x3−1)2(x2+x+1)2−7(x−1)2=13(x3−1)
d)8x2+√1x=52
Câu 3: Rút gọn phân thức : \(\dfrac{\text{x^5 + x^5 +1}}{\text{x^2 + x +1}}\)
a/ x3 –x2 +1 b/ x3+x-1 c/ x3 –x2 –x+1 d/ x3-x+1
Câu 4:Rút gọn :\(\dfrac{\text{a^2 - ab - ac + bc}}{\text{a2 + ab - ac - bc}}\)bằng mấy
Câu 4:
\(=\dfrac{a\left(a-b\right)-c\left(a-b\right)}{a\left(a+b\right)-c\left(a+b\right)}=\dfrac{a-b}{a+b}\)
g) (x + 2)(1 + x - x2 + x3 - x4) - (1 - x)(1 + x +x2 + x3 + x4);
\(=x+x^2-x^3+x^4-x^5+2+2x-2x^2+2x^3-2x^4-\left(1+x+x^2+x^3+x^4-x-x^2-x^3-x^4-x^5\right)\\ =2+3x-x^2+x^3-x^4-x^5-1\\ =-x^5-x^4+x^3-x^2+3x+1\)
x3 + 2(x – 1)2 – 2(x – 1)(x + 1) = x3 + x – 4 – (x – 7)
\(x^3+2\left(x-1\right)^2-2\left(x-1\right)\left(x+1\right)=x^3+x-4-\left(x-7\right)\)
\(\Leftrightarrow x^3+2\left(x^2-2x+1\right)-2\left(x^2-1\right)=x^3+x-4-x+7\)
\(\Leftrightarrow x^3+2x^2-4x+2-2x^2+2=x^3+3\)
\(\Leftrightarrow x^3-x^3-4x+2+2+3=0\)
\(\Leftrightarrow-4x+7=0\)
\(\Leftrightarrow x=\frac{7}{4}\)
Giải phương trình
a) x3 + x2 + x + 1 = 0
b) x3 + x2 - x - 1 = 0
c) (x + 1)2(x + 2) + (x + 1)2(x - 2) = - 24
\(a,x^3+x^2+x+1=0\\ \Rightarrow x^2\left(x+1\right)+\left(x+1\right)=0\\ \Rightarrow\left(x^2+1\right)\left(x+1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=-1\end{matrix}\right.\)
Vậy pt có tập nghiệm \(S=\left\{-1\right\}\)
\(b,x^3+x^2-x-1=0\\ \Rightarrow x^2\left(x+1\right)-\left(x+1\right)=0\\ \Rightarrow\left(x^2-1\right)\left(x+1\right)=0\\ \Rightarrow\left(x-1\right)\left(x+1\right)^2=0\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy pt có tập nghiệm \(S=\left\{-1;1\right\}\)
\(c,\left(x+1\right)^2\left(x+2\right)+\left(x+1\right)^2\left(x-2\right)=-24\\ \Rightarrow\left(x+1\right)^2\left(x+2+x-2\right)=-24\\ \Rightarrow2x\left(x^2+2x+1\right)=-24\\ \Rightarrow x^3+2x^2+x+12=0\\ \Rightarrow\left(x^3+3x^2\right)-\left(x^2+3x\right)+\left(4x+12\right)=0\\ \Rightarrow x^2\left(x+3\right)-x\left(x+3\right)+4\left(x+3\right)=0\\ \Rightarrow\left(x^2-x+4\right)\left(x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2+\dfrac{15}{4}=0\left(vô.lí\right)\\x=-3\end{matrix}\right.\)
Vậy pt có tập nghiệm \(S=\left\{-3\right\}\)
Bài 1 : Rút gọn
b) 1/x-3-1/x+3+2x/9-x2
c) x+1/x-2+4-5x/x3+4x:x-2/x2+44
Bài 2 Cho A=x3-1/(x-1)(x+2) ( với x khác 1; x khác -2)
a) Chứng tỏ biểu thức A=x3-1/(x-1)(x+2)biết x=-3
b) chứng tỏ để A=1
Câu 1:
b: ĐKXĐ: \(x\notin\left\{3;-3\right\}\)
\(\dfrac{1}{x-3}-\dfrac{1}{x+3}+\dfrac{2x}{9-x^2}\)
\(=\dfrac{1}{x-3}-\dfrac{1}{x+3}-\dfrac{2x}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{x+3-x+3-2x}{\left(x-3\right)\left(x+3\right)}=\dfrac{-2x+6}{\left(x-3\right)\left(x+3\right)}\)
\(=\dfrac{-2\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=-\dfrac{2}{x+3}\)
c: ĐKXĐ: \(x\notin\left\{2;0\right\}\)
Sửa đề: \(\dfrac{x+1}{x-2}+\dfrac{4-5x}{x^3+4x}:\dfrac{x-2}{x^2+4}\)
\(=\dfrac{x+1}{x-2}+\dfrac{4-5x}{x\left(x^2+4\right)}\cdot\dfrac{x^2+4}{x-2}\)
\(=\dfrac{x+1}{x-2}+\dfrac{4-5x}{x\left(x-2\right)}\)
\(=\dfrac{x\left(x+1\right)+4-5x}{x\left(x-2\right)}=\dfrac{x^2+x-5x+4}{x\left(x-2\right)}\)
\(=\dfrac{x^2-4x+4}{x\left(x-2\right)}=\dfrac{\left(x-2\right)^2}{x\left(x-2\right)}=\dfrac{x-2}{x}\)
Bài 2. Cho các đa thức: f(x) = x3 - 2x2 + 3x + 1; g(x) = x3 + x - 1; h(x) = 2x2 - 1
a) Tính f (x) - g(x) + h(x).
b) Tìm x sao cho f (x) - g(x) + h(x) = 0.
Bài 3. Cho các đa thức: f (x) = x3 - 2x + 1; g(x) = 2x2 - x3 + x - 3
a) Tính f (x) + g(x);f(x) - g(x).
b) Tính f (x) + g(x) tại x = -1; x = -2.
Bài 4. Cho đa thức: A = -2xy2 + 3xy + 5xy2 + 5xy + 1.
a) Thu gọn và tìm bậc của đa thức A.
b) Tính giá trị của A tại x = 1
2
; y = -1.
câu 4: b, đề bài là tính giá trị của A tại x =-1/2;y=-1
Tk
Bài 2
a) F(x)-G(x)+H(x)= \(x^3-2x^2+3x+1-\left(x^3+x-1\right)+\left(2x^2-1\right)\)
= \(x^3-2x^2+3x+1-x^3-x+1+2x^2-1\)
= \(x^3-x^3-2x^2+2x^2+3x-x+1+1-1\)
= 2x + 1
b) 2x + 1 = 0
2x = -1
x=\(\dfrac{-1}{2}\)
Tk
Bài 3
a)
f(x) + g(x)
\(x^3-2x+1+\left(2x^2-x^3+x-3\right)\)
\(x^3-2x+1+2x^2-x^3+x-3\)
\(x^3-x^3-2x+x+1-3+2x^2\)
\(-x-2+2x^2\)
f(x) - g(x)
\(x^3-2x+1-\left(2x^2-x^3+x-3\right)\)
\(x^3-2x+1-2x^2+x^3-x+3\)
\(x^3+x^3-2x-x+1+3-2x^2\)
\(2x^3-3x+4-2x^2\)
b)
Thay x = -1, ta có:
\(-\left(-1\right)-2+2\left(-1\right)^2\) = 1
x = -2, ta có
\(2\left(-2\right)^3-3\left(-2\right)+4-2\left(-2\right)^2\)
\(2\cdot\left(-8\right)+6+4-8\) = -14
Giải các phương trình sau:
a) 1 − 2 x 2 = 3 x x − 3 + x − 1 2 ;
b) 1 + x 3 + 1 − x 3 = 6 x + 1 2 ;
c) x − 4 4 − x + 3 = x 3 − 2 − x 6 ;
d) 5 x + 3 x − 4 5 15 = 3 − x 15 + 7 x 5 + 1 − x .
a) x = 0 b) x = - 1 3
c) x = 28 15 d) x = -82.
Cho D.ABC có M, N lần lượt là trung điểm của AB, AC biết BC = 6cm. Độ dài MN là
A.3cm
B.1cm
C.4cm
D.2cm
Hằng đẳng thức (x - 1)3 được viết đúng là
A.(x - 1)3 = x3 - 3x2 + 3x + 1
B.(x - 1)3 = x3 - 3x + 3x2 - 1
C.(x - 1)3 = x3 - 2x2 + 2x - 1
D.(x - 1)3 = x3 - 3x2 + 3x - 1