$\frac{a^2.sin 60^{o}}{2}=\frac{3\sqrt{3}}{4}$ suy ra $a=\sqrt{3}$
Giải các phương trình sau:
\(\begin{array}{l}a)\;sinx = \frac{{\sqrt 3 }}{2}\\b)\;sin(x + {30^o}) = sin(x + {60^o})\end{array}\)
\(a)\;sinx = \frac{{\sqrt 3 }}{2}\)
Vì \(sin\frac{\pi }{3} = \frac{{\sqrt 3 }}{2}\) nên \(sinx = \frac{{\sqrt 3 }}{2} \Leftrightarrow sin\frac{\pi }{3} = sin\frac{\pi }{3}\) \( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\\x = \pi - \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}\\x = \frac{{2\pi }}{3} + k2\pi ,k \in \mathbb{Z}\end{array} \right.\)
Vậy phương trình có nghiệm là \(x = \frac{\pi }{3} + k2\pi \) hoặc \(x = \frac{{2\pi }}{3} + k2\pi \)\(,k \in \mathbb{Z}\).
\(\begin{array}{l}b)\;sin(x + {30^o}) = sin(x + {60^o})\\ \Leftrightarrow \left[ \begin{array}{l}x + {30^o} = x + {60^o} + k{360^o},k \in \mathbb{Z}\\x + {30^o} = {180^o} - x - {60^o} + k{360^o},k \in \mathbb{Z}\end{array} \right.\\ \Leftrightarrow x = {45^o} + k{180^o},k \in \mathbb{Z}.\end{array}\)
Vậy phương trình có nghiệm là \(x = {45^o} + k{180^o},k \in \mathbb{Z}\).
Nếu \(\sin a = - \frac{{\sqrt 2 }}{3}\) thì \(\sin \left( {a + \frac{\pi }{4}} \right) + \sin \left( {a - \frac{\pi }{4}} \right)\) bằng
A.\(\frac{2}{3}\)
B.\(\frac{1}{3}\)
C.\( - \frac{2}{3}\)
D.\( - \frac{1}{3}\)
Ta có :
\(\sin \left( {a + \frac{\pi }{4}} \right) + \sin \left( {a - \frac{\pi }{4}} \right) = 2.\sin a.\cos \frac{\pi }{4} = - \frac{2}{3}\)
Chọn C
Cho tam giác ABC nhọn có: góc A bằng 60 độ; BC= \(\sqrt{\sqrt{3}-1}\)cm; diện tích tam giác ABC bằng \(\frac{\sqrt{3}}{6}\). Sin(B)+Sin(C)=\(\frac{\sqrt{6}+3\sqrt{2}}{4}\).Tính các góc B và C
1. Tìm x, biết:
a. \(\tan x+\cot x=2\)
b. \(\sin x.\cos x=\frac{\sqrt{3}}{4}\)
2.
a. Biết \(\tan\alpha=\frac{1}{3}\)Tính A=\(\frac{\sin\alpha-\cos\alpha}{\sin\alpha+\cos\alpha}\)
b. Biết \(\sin\alpha=\frac{2}{3}\)Tính B=\(3.\sin^2\alpha+4.\cos^2\alpha\)
c. Tính C=\(\sin^210^o+\sin^220^o+\sin^270^o+\sin^280^o\)
d. Tính D=\(\tan20^o.\tan35^o.\tan55^o.\tan70^o\)
e. Tính E=\(\sin^6\alpha+\cos^6\alpha+3.\sin^2\alpha.\cos^2\alpha\)
f. Tính F=\(3.\left(\sin^3\alpha+\cos^3\alpha\right)-2.\left(\sin^6\alpha+\cos^6\alpha\right)\)
g. Tính G=\(\sqrt{\sin^4\alpha+4.\cos^2\alpha}+\sqrt{\cos^4\alpha+4.\sin^2\alpha}\)
Mọi người giúp mình với. Mình cảm ơn ạ!
Giải pt
a, \(sin\left(3x+\frac{\pi}{3}\right)+sin\left(\frac{4\pi}{5}-3x\right)=\sqrt{3}\)
b, \(2tanx.cosx+1=2cosx+tanx\)
c, \(tanx+tan2x=tan3x\)
d, cos2x + sin2x = \(\frac{\sqrt{6}}{2}\)
e, \(2tan^2x+3=\frac{3}{cosx}\)
f. \(sin^24x+sin^23x=sin^22x+sin^2x\)
thanks youuuuu mấy bài này khó quá mình suy nghĩ mãi hong ra cảm ơn trước nhaa
a.
\(\Leftrightarrow2sin\frac{17\pi}{30}cos\left(3x-\frac{7\pi}{30}\right)=\sqrt{3}\)
\(\Leftrightarrow cos\left(3x-\frac{7\pi}{30}\right)=\frac{\sqrt{3}}{2sin\left(\frac{17\pi}{30}\right)}\)
Đặt \(\frac{\sqrt{3}}{2sin\left(\frac{17\pi}{30}\right)}=cosa\) với \(a\in\left(0;\pi\right)\)
\(\Rightarrow cos\left(3x-\frac{7\pi}{30}\right)=cosa\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-\frac{7\pi}{30}=a+k2\pi\\3x-\frac{7\pi}{30}=-a+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{7\pi}{90}+\frac{a}{3}+\frac{k2\pi}{3}\\x=\frac{7\pi}{30}-\frac{a}{3}+\frac{k2\pi}{3}\end{matrix}\right.\)
Chắc bạn ghi sai đề, con số \(\frac{4\pi}{3}\) sẽ hợp lý hơn con số \(\frac{4\pi}{5}\) rất nhiều
b.
ĐKXĐ: \(x\ne\frac{\pi}{2}+k\pi\)
\(\Leftrightarrow2tanx.cosx-tanx+1-2cosx=0\)
\(\Leftrightarrow tanx\left(2cosx-1\right)-\left(2cosx-1\right)=0\)
\(\Leftrightarrow\left(2cosx-1\right)\left(tanx-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=\frac{1}{2}\\tanx=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k2\pi\\x=-\frac{\pi}{3}+k2\pi\\x=\frac{\pi}{4}+k\pi\end{matrix}\right.\)
Giải phương trình:
a) \(\sin \left( {2x - \frac{\pi }{3}} \right) = - \frac{{\sqrt 3 }}{2}\)
b) \(\sin \left( {3x + \frac{\pi }{4}} \right) = - \frac{1}{2}\)
c) \(\cos \left( {\frac{x}{2} + \frac{\pi }{4}} \right) = \frac{{\sqrt 3 }}{2}\)
d) \(2\cos 3x + 5 = 3\)
e) \(3\tan x = - \sqrt 3 \)
g) \(\cot x - 3 = \sqrt 3 \left( {1 - \cot x} \right)\)
a) \(\sin \left( {2x - \frac{\pi }{3}} \right) = - \frac{{\sqrt 3 }}{2}\)
\(\begin{array}{l} \Leftrightarrow \left[ \begin{array}{l}2x - \frac{\pi }{3} = - \frac{\pi }{3} + k2\pi \\2x - \frac{\pi }{3} = \pi + \frac{\pi }{3} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}2x = k2\pi \\2x = \frac{{5\pi }}{3} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}x = k\pi \\x = \frac{{5\pi }}{6} + k\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)
Vậy phương trình có nghiệm là: \(x \in \left\{ {k\pi ;\frac{{5\pi }}{6} + k\pi } \right\}\)
b) \(\sin \left( {3x + \frac{\pi }{4}} \right) = - \frac{1}{2}\)
\(\begin{array}{l} \Leftrightarrow \left[ \begin{array}{l}3x + \frac{\pi }{4} = - \frac{\pi }{6} + k2\pi \\3x + \frac{\pi }{4} = \frac{{7\pi }}{6} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}3x = - \frac{{5\pi }}{{12}} + k2\pi \\3x = \frac{{11\pi }}{{12}} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}x = - \frac{{5\pi }}{{36}} + k\frac{{2\pi }}{3}\\x = \frac{{11\pi }}{{36}} + k\frac{{2\pi }}{3}\end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)
c) \(\cos \left( {\frac{x}{2} + \frac{\pi }{4}} \right) = \frac{{\sqrt 3 }}{2}\)
\(\begin{array}{l} \Leftrightarrow \left[ \begin{array}{l}\frac{x}{2} + \frac{\pi }{4} = \frac{\pi }{6} + k2\pi \\\frac{x}{2} + \frac{\pi }{4} = - \frac{\pi }{6} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}\frac{x}{2} = - \frac{\pi }{{12}} + k2\pi \\\frac{x}{2} = - \frac{{5\pi }}{{12}} + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{6} + k4\pi \\x = - \frac{{5\pi }}{6} + k4\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)
d) \(2\cos 3x + 5 = 3\)
\(\begin{array}{l} \Leftrightarrow \cos 3x = - 1\\ \Leftrightarrow \left[ \begin{array}{l}3x = \pi + k2\pi \\3x = - \pi + k2\pi \end{array} \right.\,\,\,\,\left( {k \in \mathbb{Z}} \right)\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k\frac{{2\pi }}{3}\\x = \frac{{ - \pi }}{3} + k\frac{{2\pi }}{3}\end{array} \right.\,\,\,\,\left( {k \in \mathbb{Z}} \right)\end{array}\)
e)
\(\begin{array}{l}3\tan x = - \sqrt 3 \\ \Leftrightarrow \tan x = \frac{{ - \sqrt 3 }}{3}\\ \Leftrightarrow \tan x = \tan \left( { - \frac{\pi }{6}} \right)\\ \Leftrightarrow x = - \frac{\pi }{6} + k\pi \end{array}\)
g)
\(\begin{array}{l}\cot x - 3 = \sqrt 3 \left( {1 - \cot x} \right)\\ \Leftrightarrow \cot x - 3 = \sqrt 3 - \sqrt 3 \cot x\\ \Leftrightarrow \cot x + \sqrt 3 \cot x = \sqrt 3 + 3\\ \Leftrightarrow (1 + \sqrt 3 )\cot x = \sqrt 3 + 3\\ \Leftrightarrow \cot x = \sqrt 3 \\ \Leftrightarrow \cot x = \cot \frac{\pi }{6}\\ \Leftrightarrow x = \frac{\pi }{6} + k\pi \end{array}\)
giải phương trình
\(\sin x\sqrt{1+2\sin x}=\cos2x\)
\(\sin\left(\frac{5x}{2}-\frac{\pi}{4}\right)-\cos\left(\frac{x}{2}-\frac{\pi}{4}\right)=\sqrt{2}\cos\frac{3x}{2}\)
\(3\sqrt{\tan x+1}\left(\sin x+2\cos x\right)=5\left(\sin x+3\cos x\right)\)
\(\sqrt{2}\left(\sin x+\sqrt{3}\cos x\right)=\sqrt{3}\cos2x-\sin2x\)
\(\sin2x\sin4x+2\left(3\sin x-4\sin^2x+1\right)=0\)
a/ Hmm, bạn có nhầm lẫn chỗ nào ko nhỉ, nghiệm của pt này xấu khủng khiếp
b/ \(\Leftrightarrow sin\frac{5x}{2}-cos\frac{5x}{2}-sin\frac{x}{2}-cos\frac{x}{2}=cos\frac{3x}{2}\)
\(\Leftrightarrow2cos\frac{3x}{2}.sinx-2cos\frac{3x}{2}cosx=cos\frac{3x}{2}\)
\(\Leftrightarrow cos\frac{3x}{2}\left(2sinx-2cosx-1\right)=0\)
\(\Leftrightarrow cos\frac{3x}{2}\left(\sqrt{2}sin\left(x-\frac{\pi}{4}\right)-1\right)=0\)
c/ Do \(cosx\ne0\), chia 2 vế cho cosx ta được:
\(3\sqrt{tanx+1}\left(tanx+2\right)=5\left(tanx+3\right)\)
Đặt \(\sqrt{tanx+1}=t\ge0\)
\(\Leftrightarrow3t\left(t^2+1\right)=5\left(t^2+2\right)\)
\(\Leftrightarrow3t^3-5t^2+3t-10=0\)
\(\Leftrightarrow\left(t-2\right)\left(3t^2+t+5\right)=0\)
d/ \(\Leftrightarrow\sqrt{2}\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)=\frac{\sqrt{3}}{2}cos2x-\frac{1}{2}sin2x\)
\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{3}\right)=-sin\left(2x-\frac{\pi}{3}\right)\)
Đặt \(x+\frac{\pi}{3}=a\Rightarrow2x=2a-\frac{2\pi}{3}\Rightarrow2x-\frac{\pi}{3}=2a-\pi\)
\(\sqrt{2}sina=-sin\left(2a-\pi\right)=sin2a=2sina.cosa\)
\(\Leftrightarrow\sqrt{2}sina\left(\sqrt{2}cosa-1\right)=0\)
a) sin(x-15 độ)=\(\frac{-\sqrt{2}}{2}\)
b) sin(\(\frac{2\pi}{3}-2x\))=\(\frac{\sqrt{3}}{2}\)
c) sin(\(\frac{2x}{3}+\frac{\pi}{4}\))=0
d) sin(\(\frac{2\pi}{5}-x\))=1 với\(\frac{3\pi}{2}< x< \frac{3\pi}{2}\)
câu d) là \(-\frac{3\pi}{2}< x< \frac{3\pi}{2}\) mình vã quá nên ghi nhầm nha mọi người
Cho biết \(\sin {30^o} = \frac{1}{2};\sin {60^o} = \frac{{\sqrt 3 }}{2};\tan {45^o} = 1.\) Sử dụng mối liên hệ giữa các giá trị lượng giác của hai góc bù nhau, phụ nhau để tính giá trị của \(E = 2\cos {30^o} + \sin {150^o} + \tan {135^o}.\)
Ta có:
\(\begin{array}{l}\cos {30^o} = \sin \left( {{{90}^o} - {{30}^o}} \right) = \sin {60^o} = \frac{{\sqrt 3 }}{2};\\\sin {150^o} = \sin \left( {{{180}^o} - {{150}^o}} \right) = \sin {30^o} = \frac{1}{2};\\\tan {135^o} = - \tan \left( {{{180}^o} - {{135}^o}} \right) = - \tan {45^o} = - 1\end{array}\)
\( \Rightarrow E = 2.\frac{{\sqrt 3 }}{2} + \frac{1}{2} - 1 = \sqrt 3 - \frac{1}{2}.\)