Những câu hỏi liên quan
HD
Xem chi tiết
H24
21 tháng 4 2020 lúc 16:08
https://i.imgur.com/K1Kg6qE.jpg
Bình luận (0)
JP
Xem chi tiết
TQ
21 tháng 5 2019 lúc 20:15

a) \(A=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{3-11\sqrt{x}}{9-x}=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{11\sqrt{x}-3}{x-9}=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{11\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{2x-6\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{x+4\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{11\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{2x-6\sqrt{x}+x+4\sqrt{x}+3+11\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3x+9\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3\sqrt{x}}{\sqrt{x}-3}\)

Bình luận (1)
H24
Xem chi tiết
GL

\(1,A=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}-1}{x+\sqrt{x}+1}\)

2, Với x>1 ta có \(\frac{1}{A}=\frac{x+\sqrt{x}+1}{\sqrt{x}-1}=\frac{\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)+3}{\sqrt{x}-1}\)

\(=\sqrt{x}-1+\frac{3}{\sqrt{x}-1}+3\)

Áp dụng bđt AM-GM ta có

\(\frac{1}{A}\ge2\sqrt{\left(\sqrt{x}-1\right).\frac{3}{\sqrt{x}-1}}+3=2\sqrt{3}+3\)

Dấu "=" xảy ra khi \(\left(\sqrt{x}-1\right)^2=3\Rightarrow\sqrt{x}=\pm\sqrt{3}+1\)

\(\Rightarrow x=\left(\pm\sqrt{3}+1\right)^2=4\pm2\sqrt{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
NL
Xem chi tiết
NL
21 tháng 10 2020 lúc 18:45

Giúp mình với mình đang cần gấp. Thk you các pạn

Bình luận (0)
 Khách vãng lai đã xóa
SN
Xem chi tiết
TD
19 tháng 1 2020 lúc 19:20

bạn xem lại đề coi ?

Bình luận (0)
 Khách vãng lai đã xóa
SN
19 tháng 1 2020 lúc 19:45

đây là đề bài lấy từ đề thi huyện năm 2015-2016 của trường minh nha 

Bình luận (0)
 Khách vãng lai đã xóa
TD
19 tháng 1 2020 lúc 19:46

oh . bạn không thấy à

rõ ràng bạn ghi A = 2 mà chứng minh A < 1

Bình luận (0)
 Khách vãng lai đã xóa
gh
Xem chi tiết
NT
16 tháng 5 2021 lúc 20:10

a, Với \(x\ge0;x\ne1\)

\(Q=\left(\frac{x-1}{\sqrt{x}-1}-\frac{x\sqrt{x}-1}{x-1}\right):\left(\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}+\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)

\(=\left(\sqrt{x}+1-\frac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x-1}\right):\left(\frac{x-\sqrt{x}+1}{\sqrt{x}+1}\right)\)

\(=\left(\sqrt{x}+1-\frac{x+\sqrt{x}+1}{\sqrt{x}+1}\right):\left(\frac{x-\sqrt{x}+1}{\sqrt{x}+1}\right)\)

\(=\left(\frac{x+2\sqrt{x}+1-x-\sqrt{x}-1}{\sqrt{x}+1}\right):\left(\frac{x-\sqrt{x}+1}{\sqrt{x}+1}\right)\)

\(=\frac{\sqrt{x}}{x-\sqrt{x}+1}\)

Bình luận (0)
 Khách vãng lai đã xóa
NC
16 tháng 5 2021 lúc 16:41

Bạn ghi chuẩn đề chưa vậy

Bình luận (0)
 Khách vãng lai đã xóa
gh
16 tháng 5 2021 lúc 16:53

đúng mà

a) rút gọn biểu thức Q

b) Tính giá trị của x để Q<1

Bình luận (0)
 Khách vãng lai đã xóa
AM
Xem chi tiết
NL
14 tháng 4 2020 lúc 22:43

a/ Bạn tự giải

b/ \(B=\frac{1}{\sqrt{x}-1}-\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)

\(=\frac{x+\sqrt{x}+1-x-2-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}-x}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{-\sqrt{x}}{x+\sqrt{x}+1}\)

c/ \(C=-AB=\frac{\left(x+\sqrt{x}+1\right)\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}}{\sqrt{x}+1}\)

Do \(\sqrt{x}\ge0\Rightarrow C\ge0\)

\(C=\frac{\sqrt{x}+1-1}{\sqrt{x}+1}=1-\frac{1}{\sqrt{x}+1}< 1\)

\(\Rightarrow0\le C< 1\)

Mà C nguyên \(\Rightarrow C=0\Rightarrow x=0\)

Bình luận (0)
TT
Xem chi tiết
TT
30 tháng 9 2018 lúc 15:25

Giúp tớ nhanh nhanh nha!Cảm ơn rất rất nhiều.

Bình luận (0)
DA
Xem chi tiết
MP
12 tháng 8 2019 lúc 9:13

a) A= \(\left(\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right):\left(\frac{\sqrt{x}-1}{2}\right)\) (x ≥ 0; x ≠ 4)

= \(\left(\frac{x+2}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}-1\right)\cdot\sqrt{x}}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}\right):\frac{\sqrt{x}-1}{2}\)

=\(\left(\frac{x+2+x-\sqrt{x}-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}\right)\cdot\frac{2}{\sqrt{x}-1}\)

=\(\left(\frac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}\right)\cdot\frac{2}{\sqrt{x}-1}\)

= \(\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\cdot\left(x+\sqrt{x}+1\right)}\cdot\frac{2}{\sqrt{x}-1}\)

=\(\frac{2}{x+\sqrt{x}+1}\)

b) Ta có: x ≥ 0 ⇒ \(\sqrt{x}\) ≥ 0

⇒x+\(\sqrt{x}\)+1 ≥ 1 > 0

mà 2 > 0

⇒ A > 0 (1)

Ta có:

\(x+\sqrt{x}+1\) ≥ 1

\(\frac{1}{x+\sqrt{x}+1}\) ≤ 1

\(\frac{2}{x+\sqrt{x}+1}\) ≤ 2

⇒A ≤ 2 (2)

Từ (1) và (2) => 0 < A ≤ 2

Bình luận (0)