cmr:11^9+11^8+11^7+...+11 chia hết cho 5
a) A=7^10+7^9-7^8. CMR:A chia hết cho 11 b)B=11^5+11^4+11^3. CMR B chia hết cho 7
a) Ta có A = 710 + 79 - 78
= 78( 72 + 7 - 1 )
= 78 . 55 ⋮ 11 vì 55 ⋮ 11
Vậy A ⋮ 11
b) Ta có B = 115 + 114 + 113
= 113( 112 + 11 + 1 )
= 113 . 133 ⋮ 7
Vậy B ⋮ 7
a,A=710+79-78=78(72+7-1)=78x55 ⋮11 vì 55⋮11
b,115+114+113=113(112+11+1)=113x133⋮7 vì 133⋮7
a) Ta có A = 710 + 79 - 78
= 78( 72 + 7 - 1 )
= 78 . 55 ⋮ 11 vì 55 ⋮ 11
Vậy A ⋮ 11
b) Ta có B = 115 + 114 + 113
= 113( 112 + 11 + 1 )
= 113 . 133 ⋮ 7
Vậy B ⋮ 7
Cho A= 11^9 + 11^8 + 11^7 + .... + 11+1. CMR A chia hết cho 5
bạn vô đây Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
ai kết bạn đi
1. CMR : A = 13!-11! chia hết cho 155
2. Tìm n thuộc N sao cho (3n+1) chia hết cho (11+ 2n)
3. CMR C = 11^9 + 11^8 + 11^7 +...+11^0 chia hết cho 5
4. Tìm số tn chia 8 dư 3, chia 125 dư 12
Ta có :
A = 13! - 11! = 11! . 12 . 13 - 11! = 11! . (12 . 13 - 1) = 11! . 155 chia hết cho 155
Cho A=119+118+117+.....+11+1.CMR A chia hết cho 5
câu hỏi tương tự có nhiều dạng này lắm bạn ạ
Cho A=11^9+11^8+......+11+1(CMR A chia hết cho 5)
ta co' tinh chat cua luy thua cua 11 nhu sau:
So cuoi cung cua 11^x luon = 1.
Tu` do' ta de dang thay':A= 11^9+11^8+...+11+1 cac so hang deu co so tan cung = 1 va co 10 so hang do do' so' tan cung cua tong?
nay` la` 0. Vay A chia het cho 5.
Ta có:
A = (119 + 118 + 117 + 116 + 115) + (114 +113 + 112 + 11 + 1)
A = Chia hết cho 5 + Chia hết cho 5
=> A chia hết cho 5
=>11A=1110+119+118+...+112+11
=>11A-A=(1110+119+...+112+11)-(119+118 +...+11+1)
=> 10A= 1110-1
=> A = (1110-1):10
Ta thấy 1110có tận cùng là 1 =>1110-1 có tận cùng là 0 => (1110-1) :10 có tận cùng là 0 chia hết cho 5
Vậy Achia hết cho 5
Tích cho mính nhé :)
CMR:(119+118+............+11+1)chia hết cho 5
Cho biểu thức trên là A.Ta có:
A=119+118+117+...+11+1
=>11A= 1110+119+118+...+112+11
=> 11A-A= (1110+119+118+...+112+11)-(119+118+117+...+11+1)
=> 10A= 1110-1
=>A= (1110-1):10
Ta thấy: 1110 có tận cùng là 1=> 1110-1 có tận cùng là 0 0=> (1110-1):10 có tận cùng là 0 chia hết cho 5
Vậy A chia hết cho 5
CMR mọi n thuộc N
(n+3) x (n+6) chia hết cho 2
CMR
A= 11^9 + 11^8 +...+ 11 + 1 chia hết cho 5
Mk chỉ bt lm phần trên thôi nha :)
Xét thừa số (n+3) ta thấy: 3 là số tự nhiên lẻ (1)
Lại có trong thừa số (n+6): 6 là số tự nhiên chẵn(2)
Mà số tự nhiên chia hết cho 2 là số tự nhiên chẵn và trong 1 tích chỉ cần 1 thừa số là số chẵn => tích đó chẵn.(3)
Từ (1) (2) và (3): (n+3)x(n+6) luôn là số chẵn hay chia hết cho 2 với mọi n thuộc N
A=\(11^9+11^8+..........+11+1\)
CMR A chia hết cho 5
A = 119 + 118 + ... + 11 + 1
A = 119 + 118 + ... + 111 + 110
Dễ thấy: A là tổng của của 10 số hạng, mỗi số hạng là lũy thừa của 11 nên đều có tận cùng là 1
=> A có tận cùng là 0, chia hết cho 5 (đpcm)
CMR
( 11 + 11² + 11³ +...+ 11^7 + 11^8) chia hết cho 12
\(11+11^2+11^3+11^4+11^5+11^6+11^7+11^8\)
\(=11\left(1+11\right)+11^3\left(1+11\right)+11^5\left(1+11\right)+11^7\left(1+11\right)\)
\(=\left(11+11^3+11^5+11^7\right).12⋮12\)
Vậy ...
Đặt A=\(11+11^2+11^3+....+11^7+11^8\)
\(\Leftrightarrow A=\left(11+11^2\right)+\left(11^3+11^4\right)+...+\left(11^7+11^8\right)\)
\(\Leftrightarrow A=11\left(1+11\right)+11^3\left(1+11\right)+....+11^7\left(1+11\right)\)
\(\Leftrightarrow A=11\cdot12+11^3\cdot12+...+11^7\cdot12\)
\(\Leftrightarrow A=12\left(11+11^3+....+11^7\right)\)
=> A chia hết cho 12 (đpcm)
ta có \(\left(11+11^2+11^3+...+11^7+11^8\right)=\left(11+11^2\right)+\left(11^3+11^4\right)+...+\left(11^7+11^8\right)\)
=\(11\left(1+11\right)+11^3\left(1+11\right)+...+11^7\left(1+11\right)\)
= \(12\left(11+11^3+..+11^7\right)\)\
=> \(\left(11+11^2+...+11^8\right)⋮12\)