Những câu hỏi liên quan
TT
Xem chi tiết
DM
Xem chi tiết

x^2 + 4/x^2 -3x + 6/x  -2 =0

(x^2 +4/x^2) -3(x -2/x) -2 =0

Đặt t = x-2/x

Suy ra 

t^2 + 4 - 3t-2=0

t^2- 3t + 2 = 0

(t-1) (t-2) = 0

t=1 hay t =2

Nếu t =1

x-2/x =1

(x^2-2)/x =1

x^2-2 = x

x^2-x-2=0

(x+1) (x-2)=0

x= -1 hay x= 2

Nếu t = 2

x- 2/x =2

(x^2-2)/x =2

x^2 -2 = 2x

x^2- 2x-2 =0

(x-1)^2 -3 =0

(x-1)^2 =3

x-1 = căn 3 hay x -1 = âm căn 3

x= căn 3 + 1 hay x = 1 + âm căn 3

Vậy....

Bình luận (0)
 Khách vãng lai đã xóa
DM
Xem chi tiết
ND
Xem chi tiết
DM
Xem chi tiết
PQ
14 tháng 1 2020 lúc 20:59

\(VT-VP=\Sigma_{cyc}\frac{2a+b+c}{a^2b\left(a+b+c\right)}\left(a-b\right)^2\ge0\)

hay \(\frac{a}{c^2}+\frac{1}{a}\ge\frac{2}{c}\)\(\Leftrightarrow\)\(\frac{a}{c^2}\ge\frac{2}{c}-\frac{1}{a}\)\(\Rightarrow\)\(VT\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)

"=" \(\Leftrightarrow\)\(a=b=c\)

Bình luận (0)
 Khách vãng lai đã xóa
NV
Xem chi tiết
BH
31 tháng 7 2019 lúc 9:34

\(x^2-2x+3=t\left(t\ge0\right)\)

\(pt\Leftrightarrow\frac{1}{t-1}+\frac{1}{t}=\frac{9}{2\left(t+1\right)}\)

\(\Leftrightarrow\frac{2t\left(t+1\right)}{2t\left(t^2-1\right)}+\frac{2\left(t^2-1\right)}{2t\left(t^2-1\right)}-\frac{9t\left(t-1\right)}{2t\left(t^2-1\right)}=0\)

\(\Leftrightarrow-5t^2+11t-2=0\)

\(\Leftrightarrow\left(5x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=2\end{cases}}\)

Bình luận (0)
TX
Xem chi tiết
NL
7 tháng 2 2020 lúc 15:43

ĐKXĐ: ...

\(\Leftrightarrow x^2+\frac{4}{x^2}-3\left(x-\frac{2}{x}\right)-2=0\)

Đặt \(x-\frac{2}{x}=a\Rightarrow x^2+\frac{4}{x^2}=a^2+4\)

\(\Rightarrow a^2+4-3a-2=0\Leftrightarrow a^2-3a+2=0\Rightarrow\left[{}\begin{matrix}a=1\\a=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x-\frac{2}{x}=1\\x-\frac{2}{x}=2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-x-2=0\\x^2-2x-2=0\end{matrix}\right.\)

Bình luận (0)
 Khách vãng lai đã xóa
AH
7 tháng 2 2020 lúc 15:46

Lời giải:

ĐKXĐ: $x\neq 0$

Nhân 2 vế với $x^2$ ta có:

$x^4+6x-3x^3=2x^2-4$

$\Leftrightarrow x^4-3x^3-2x^2+6x+4=0$

$\Leftrightarrow x^4-2x^3-x^3+2x^2-4x^2+8x-2x+4=0$

$\Leftrightarrow x^3(x-2)-x^2(x-2)-4x(x-2)-2(x-2)=0$

$\Leftrightarrow (x-2)(x^3-x^2-4x-2)=0$

$\Leftrightarrow (x-2)(x^3+x^2-2x^2-2x-2x-2)=0$

$\Leftrightarrow (x-2)[x^2(x+1)-2x(x+1)-2(x+1)]=0$

$\Leftrightarrow (x-2)(x+1)(x^2-2x-2)=0$

\(\Rightarrow \left[\begin{matrix} x=2\\ x=-1\\ x=1\pm \sqrt{3}\end{matrix}\right.\)(đều thỏa mãn)

Vậy......

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
TN
Xem chi tiết