Những câu hỏi liên quan
KT
Xem chi tiết
EC
11 tháng 10 2019 lúc 20:29

Ta có: B = x2 + 2y2 - 2xy + 2x - 6y + 10

B = (x2 - 2xy + y2) + 2x - 6y + y2 + 10

B = (x - y)2 + 2(x - y) + 1 - 4y + y2 + 4 + 5

B = (x - y + 1)2 + (y - 2)2 + 5 \(\ge\)\(\forall\)x;y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y+1=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=y-1\\y=2\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)

Vậy MinB = 5 <=> x = 1 và y = 2

Bình luận (0)
LP
Xem chi tiết
AH
14 tháng 12 2023 lúc 11:40

Lời giải:

$M=(x^2+y^2+2xy)+x^2+y^2-6x-6y+11$

$=(x+y)^2+x^2+y^2-6x-6y+11$

$=(x+y)^2-4(x+y)+4+(x^2-2x+1)+(y^2-2y+1)+5$

$=(x+y-2)^2+(x-1)^2+(y-1)^2+5\geq 0+0+0+5=5$
Vậy $M_{\min}=5$. Giá trị này đạt tại $x+y-2=x-1=y-1=0$

$\Leftrightarrow x=y=1$

Bình luận (0)
LP
Xem chi tiết
TC
26 tháng 7 2021 lúc 9:01

undefined

Bình luận (0)
PN
Xem chi tiết
TM
9 tháng 7 2017 lúc 22:14

\(Q=x^2+2y^2+2xy-2x-6y+2015\)

\(Q=x^2+2x\left(y-1\right)+2y^2-6y+2015\)

\(Q=x^2+2x\left(y-1\right)+y^2-2y+1+y^2-4y+4+2010\)

\(Q=x^2+2x\left(y-1\right)+\left(y-1\right)^2+\left(y-2\right)^2+2010\)

\(Q=\left(x+y-1\right)^2+\left(y-2\right)^2+2010\ge2010\forall x;y\)

Dấu "=" xảy ra khi x=-3;y=4

Bình luận (0)
NT
30 tháng 10 2017 lúc 17:07

2015 nha bạn.

Bình luận (0)
NN
20 tháng 4 2020 lúc 9:55

\(Q=x^2+2y^2+2xy-2x-6y+2015\)

\(Q=\left(x^2+y^2+1+2xy-2x-2y\right)+\left(y^2-4y+4\right)+2010\)

\(Q=\left(x+y-1\right)^2+\left(y-2\right)^2+2010\ge2010\)

Dâu'=' xảy ra khi và chỉ khi 

\(\hept{\begin{cases}x+y-1=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}}\)

Vậy giá trị nhỏ nhất của Q bằng 2010, xảy ra khi x=-1,y=2

Bình luận (0)
 Khách vãng lai đã xóa
RN
Xem chi tiết
RN
26 tháng 12 2020 lúc 22:13

Ai giúp mik với ạ 😢😭😭😭😭😢😷

Bình luận (0)
NL
27 tháng 12 2020 lúc 11:32

\(A=\left(x^2+y^2+36-2xy-12x+12y\right)+5y^2-10y+5+109\)

\(A=\left(x-y-6\right)^2+5\left(y-1\right)^2+109\ge109\)

\(A_{min}=109\) khi \(\left\{{}\begin{matrix}x=7\\y=1\end{matrix}\right.\)

Bình luận (0)
WS
Xem chi tiết
NM
4 tháng 9 2021 lúc 16:46

\(A=x^2+4x+5=\left(x+2\right)^2+1\ge1\)

Dấu \("="\Leftrightarrow x=-2\)

\(B=x^2+10x-1=\left(x+5\right)^2-26\ge-26\)

Dấu \("="\Leftrightarrow x=-5\)

\(C=5-4x+4x^2=\left(2x-1\right)^2+4\ge4\)

Dấu \("="\Leftrightarrow x=\dfrac{1}{2}\)

\(D=x^2+y^2-2x+6y-3=\left(x-1\right)^2+\left(y+3\right)^2-13\ge-13\)

Dấu \("="\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)

\(E=2x^2+y^2+2xy+2x+3=\left(x+y\right)^2+\left(x+1\right)^2+2\ge2\)

Dấu \("="\Leftrightarrow x=-y=-1\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Bình luận (0)
NT
4 tháng 9 2021 lúc 20:38

\(A=x^2+4x+5\)

\(=x^2+4x+4+1\)

\(=\left(x+2\right)^2+1\ge1\forall x\)

Dấu '=' xảy ra khi x=-2

\(C=4x^2-4x+5\)

\(=4x^2-4x+1+4\)

\(=\left(2x-1\right)^2+4\ge4\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

Bình luận (0)
TP
Xem chi tiết
NM
27 tháng 12 2021 lúc 11:25

\(A=\left(x^2+2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{5}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{5}{4}\ge-\dfrac{5}{4}\\ A_{min}=-\dfrac{5}{4}\Leftrightarrow x=-\dfrac{3}{2}\\ B=\left(x^2+2xy+y^2\right)+\left(x^2+6x+9\right)+3\\ B=\left(x+y\right)^2+\left(x+3\right)^2+3\ge3\\ B_{min}=3\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\\ C=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1\le1\\ C_{max}=1\Leftrightarrow x=1\)

Bình luận (0)
NH
Xem chi tiết
HN
10 tháng 12 2016 lúc 23:17

\(3y^2+x^2+2xy+2x+6y+2017=x^2+2x\left(y+1\right)+\left(y+1\right)^2+\left(2y^2+4y+2\right)+2014\)

\(=\left(x+y+1\right)^2+2\left(y+1\right)^2+2014\ge2014\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}x+y+1=0\\y+1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=-1\end{cases}}\)

Vậy BT đạt GTNN bằng 2014 tại (x;y) = (0;-1)

Bình luận (0)
PT
Xem chi tiết
H24
15 tháng 11 2016 lúc 20:18

2A=(2x-y)^2+3(y-2)^2+9>=9

A>=9/2

Bình luận (0)