Những câu hỏi liên quan
CR
Xem chi tiết
NT
30 tháng 3 2022 lúc 21:17

a: Xét ΔABM vuông tại M và ΔACN vuông tại N có

\(\widehat{BAM}\) chung

Do đó: ΔABM\(\sim\)ΔACN

b: Xét ΔHNB vuông tại N và ΔHMC vuông tại M có 

\(\widehat{NHB}=\widehat{MHC}\)

Do đó: ΔHNB\(\sim\)ΔHMC

Suy ra: HN/HM=HB/HC

hay \(HN\cdot HC=HB\cdot HM\)

Bình luận (0)
LD
30 tháng 3 2022 lúc 21:22

a, Xét ΔABM và ΔACN có 

\(\widehat{N}=\widehat{M}=90^0\)

\(\widehat{A}:chung\)

\(\Rightarrow\Delta ABM\sim\Delta ACN\left(g-g\right)\)

b, Xét ΔNHB và ΔMHC có :

\(\widehat{N}=\widehat{M}=90^0\)

\(\widehat{NHB}=\widehat{MHC}\left(đối\cdotđỉnh\right)\)

\(\Rightarrow\Delta NHB\sim\Delta MHC\left(g-g\right)\)

\(\Rightarrow\dfrac{HB}{HC}=\dfrac{HN}{HM}\)

\(\Rightarrow HB.HM=HC.HN\left(đpcm\right)\)

Bình luận (0)
TC
Xem chi tiết
NT
28 tháng 7 2023 lúc 15:51

a: Xét ΔABM vuông tại M và ΔACN vuông tại N có

góc BAM chung

=>ΔABM đồng dạng với ΔACN

=>AM/AN=AB/AC

=>AM*AC=AN*AB và AM/AB=AN/AC

b: Xét ΔAMN và ΔABC có

AM/AB=AN/AC

góc MAN chung

=>ΔAMN đòng dạng với ΔABC

c: ΔAMN đồng dạng với ΔABC

=>S AMN/S ABC=(AM/AB)^2=(cos60)^2=1/4

=>S ABC=4*S AMN

Bình luận (0)
NT
Xem chi tiết
NT
1 tháng 8 2023 lúc 10:47

a: Xét ΔAMB vuông tại M và ΔANC vuông tại N có

AB=AC
góc BAM chung

=>ΔAMB=ΔAMC

=>góc ABM=góc ACN

b: góc ABM+góc HBC=góc ABC

góc ACN+góc HCB=góc ACB

mà góc ABM=góc ACN và góc ABC=góc ACB

nên góc HBC=góc HCB

=>HB=HC

c: Xét ΔABC có AN/AB=AM/AC

nên NM//BC

NM//BC

=>góc HMN=góc HBC; góc HNM=góc HCB

mà góc HBC=góc HCB

nên góc HMN=góc HNM

góc EMN=góc MNC

góc MNC=góc HMB

=>góc EMN=góc HMB

=>MN là phân giác của góc EMB

Bình luận (0)
DU
1 tháng 8 2023 lúc 13:36

a: Xét ΔAMB vuông tại M và ΔANC vuông tại N có AB=AC

góc BAM chung

=>ΔAMB=ΔAMC

=>góc ABM=góc ACN

b: góc ABM+góc HBC=góc ABC

góc ACN+góc HCB=góc ACB

mà góc ABM=góc ACN và góc ABC=góc ACB

nên góc HBC=góc HCB

=>HB=HC

c: Xét ΔABC có AN/AB=AM/AC nên NM//BC NM//BC

=>góc HMN=góc HBC; góc HNM=góc HCB mà góc HBC=góc HCB nên:

góc HMN=góc HNM; góc EMN=góc MNC; góc MNC=góc HMB

=>góc EMN=góc HMB

=>MN là phân giác của góc EMB

Bình luận (0)
TT
Xem chi tiết
NT
7 tháng 3 2022 lúc 0:31

a: Xét ΔABC có

BM là đường cao

CN là đường cao

BM cắt CN tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC

b: Xét tứ giác AMHN có \(\widehat{AMH}+\widehat{ANH}=180^0\)

nên AMHN là tứ giác nội tiếp

c: Xét tứ giác BCMN có \(\widehat{BNC}=\widehat{BMC}=90^0\)

nên BCMN là tứ giác nội tiếp

Bình luận (0)
TT
Xem chi tiết
H24
Xem chi tiết
TH
24 tháng 1 2021 lúc 22:30

Vì BM, CN là 2 đường cao ứng vs AC, AB (gt)

\(\Rightarrow\) \(\widehat{AMB}=\widehat{ANC}\) = 90o

\(\Rightarrow\) \(\widehat{AMH}=\widehat{ANH}\) = 90o (H \(\in\) BM; H \(\in\) CN do BM \(\cap\) CN tại H)

Xét tứ giác ANHM có: \(\widehat{AMH}=\widehat{ANH}\)

\(\widehat{AMH}\) và \(\widehat{ANH}\) là 2 góc đối nhau (gt)

\(\Rightarrow\) ANHM là tứ giác nội tiếp (dhnb tứ giác nội tiếp)

Vì BM, CN là 2 đường cao ứng vs AC, AB (gt)

\(\Rightarrow\) \(\widehat{BNC}=\widehat{CMB}\) = 90o

Mà \(\widehat{BNC}\) và \(\widehat{CMB}\) đều nhìn cạnh BC với một góc 90o (cmt)

\(\Rightarrow\) BNMC là tứ giác nột tiếp (dhnb tứ giác nội tiếp)

Chúc bn học tốt!

Bình luận (1)
NT
24 tháng 1 2021 lúc 22:34

Gọi O là trung điểm của AH

Ta có: ΔANH vuông tại N(HN⊥AB tại N)

mà NO là đường trung tuyến ứng với cạnh huyền AH(O là trung điểm của AH)

nên \(NO=\dfrac{AH}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(1)

Ta có: ΔAMH vuông tại M(HM⊥AC tại M)

mà MO là đường trung tuyến ứng với cạnh huyền AH(O là trung điểm của AH)

nên \(MO=\dfrac{AH}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(2)

Ta có: O là trung điểm của AH(cmt)

nên \(AO=OH=\dfrac{AH}{2}\)(3)

Từ (1), (2) và (3) suy ra OA=ON=OM=OH

⇔A,H,M,N∈(O)

hay tứ giác AMHN nội tiếp đường tròn(O)

Gọi D là trung điểm của BC

Ta có: ΔCBN vuông tại N(CN⊥AB tại N)

mà ND là đường trung tuyến ứng với cạnh huyền BC(D là trung điểm của BC)

nên \(ND=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(4)

Ta có: ΔMBC vuông tại M(MB⊥AC tại M)

mà MD là đường trung tuyến ứng với cạnh huyền BC(D là trung điểm của BC)

nên \(MD=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(5)

Ta có: D là trung điểm của BC(theo cách gọi)

nên \(BD=DC=\dfrac{BC}{2}\)(6)

Từ (4), (5) và (6) suy ra DB=DC=DN=DM

⇔B,C,N,M∈(D)

hay tứ giác BNMC nội tiếp đường tròn(D)(đpcm)

Bình luận (2)
H24
Xem chi tiết
DT
Xem chi tiết
TH
20 tháng 2 2022 lúc 21:50

AH cắt BC tại P.

-Xét △ABC có: 

BM, CN lần lượt là các đường cao (gt).

BM và CN cắt nhau tại H.

\(\Rightarrow\) H là trực tâm của △ABC.

\(\Rightarrow\) AH là đường cao của △ABC.

Mà AH cắt BC tại P (gt).

\(\Rightarrow\) AH⊥BC tại P.

-Xét △BHP và △BCM có:

\(\widehat{CBM}\) là góc chung.

\(\widehat{BPH}=\widehat{BMC}=90^0\)

\(\Rightarrow\)△BHP ∼ △BCM (g-g).

\(\Rightarrow\)\(\dfrac{BH}{BC}=\dfrac{BP}{BM}\) (2 tỉ lệ tương ứng).

\(\Rightarrow BH.BM=BP.BC\) (1)

-Xét △CHP và △CBN có:

\(\widehat{BCN}\) là góc chung.

\(\widehat{CPH}=\widehat{CNB}=90^0\)

\(\Rightarrow\)△CHP ∼ △CBN (g-g).

\(\Rightarrow\)\(\dfrac{CH}{CB}=\dfrac{CP}{CN}\) (2 tỉ lệ tương ứng).

\(\Rightarrow CH.CN=CP.CB\) (2)

-Từ (1), (2) suy ra:

\(BH.BM+CH.CN=BP.BC+CP.BC=BC\left(BP+CP\right)=BC.BC=BC^2\)

Bình luận (0)
UI
Xem chi tiết
NC
2 tháng 3 2020 lúc 21:09

Cả 3 bài này đều sử dụng định lí Pascal

B1: Với các điểm: NAMCIB cùng thuộc đường tròn (O)

NC cắt BM tại H; NI cắt AB  tại P ; MI cắt AC tại Q 

=> P; H ; Q thẳng hàng

B2: Xét các điểm ADCIBE  cùng thuộc đường tròn (O)

B3: Tương tự.

Bình luận (0)
 Khách vãng lai đã xóa
LM
Xem chi tiết