Những câu hỏi liên quan
HT
Xem chi tiết
KH
Xem chi tiết
H24
17 tháng 1 2021 lúc 19:10

7,3, -6

ĐKXĐ: \(x\ne7;x\ne2\)

BPT \(\Leftrightarrow f\left(x\right)=\dfrac{\left(6-2x\right)^3\left(x+6\right)}{\left(x-7\right)^3}\le0\)

Lập bảng xét dấu ta có:

Từ đây ta thấy \(-6\le x\le3\) hoặc \(x>7\) thỏa mãn bất phương trình ban đầu.

Vậy...

 

Bình luận (0)
A4
Xem chi tiết
NT
2 tháng 6 2023 lúc 8:56

a: =>x+3=x-2 hoặc x+3=2-x

=>2x=-1

=>x=-1/2

b: =>3x+7=x-2 hoặc 3x+7=-x+2

=>2x=-9 hoặc 4x=-5

=>x=-5/4 hoặc x=-9/2

c: =>|3x-4|=|2x-5|

=>3x-4=2x-5 hoặc 3x-4=-2x+5

=>x=-1 hoặc x=9/5

Bình luận (0)
H24
Xem chi tiết
NT
7 tháng 2 2023 lúc 23:57

=>xy-2x=xy-4x+2y-8 và 2xy+7x-6y-21=2xy+6x-7y-21

=>2x-2y=-8 và x+y=0

=>x-y=-4 và x+y=0

=>2x=-4 và x+y=0

=>x=-2 và y=2

Bình luận (0)
NT
Xem chi tiết
TL
16 tháng 2 2020 lúc 22:07

=> x2+14x+49+x2-3x+2x-6=2(x2+4x-x-4)

=>x2+14x+49+x2-x-6-2x2-8x+8=0

=> (x2+x2-2x2) + ( 14x-x-8x ) + (49-6+8)=0

=>5x + 51 = 0

=>5x=-51

Vậy S={-51/5}

=>x=-51/5

Bình luận (0)
 Khách vãng lai đã xóa
BK
Xem chi tiết
H24
15 tháng 1 2022 lúc 22:24

ĐKXĐ:\(\left\{{}\begin{matrix}x\ne1\\x\ne2\\x\ne7\end{matrix}\right.\)

\(\dfrac{2\left(x-4\right)}{\left(x-1\right)\left(x-7\right)}\ge\dfrac{1}{x-2}\\ \Leftrightarrow\dfrac{2x-8}{x^2-8x+7}\ge\dfrac{1}{x-2}\\ \Leftrightarrow\left(2x-8\right)\left(x-2\right)\ge x^2-8x+7\)

\(\Leftrightarrow2x^2-12x+16\ge x^2-8x+7\\ \Leftrightarrow x^2-4x+9\ge0\left(luôn.đúng\right)\)

Bình luận (0)
NL
Xem chi tiết
TH
3 tháng 2 2022 lúc 9:01

f. 5 – (x – 6) = 4(3 – 2x)

<=>5-x+6=12-8x

<=>7x=1

<=>x=\(\dfrac{1}{7}\)

g. 7 – (2x + 4) = – (x + 4)

<=>7-2x-4=-x-4

<=>x=7

h. 2x(x+2)\(^2\)−8x\(^2\)=2(x−2)(x\(^2\)+2x+4)

<=>\(2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)

<=>\(2x^3+8x^2+8x-8x^2=2\left(x^3-8\right)\)

<=>\(2x^3+8x=2x^3-16\)

<=>\(8x=-16\)

<=>\(x=-2\)

i. (x−2\(^3\))+(3x−1)(3x+1)=(x+1)\(^3\)

<=>\(x-8+9x^2-1=x^3+3x^2+3x+1\)

<=>\(6x^2-2x-10=0\)

<=>\(3x^2-x-5=0\)

<=>\(\left[{}\begin{matrix}x=\dfrac{1+\sqrt{61}}{6}\\x=\dfrac{1-\sqrt{61}}{6}\end{matrix}\right.\)

k. (x + 1)(2x – 3) = (2x – 1)(x + 5)

<=>\(2x^2-x-3=2x^2+9x-5\)

<=>10x=2

<=>\(x=\dfrac{1}{5}\)

Bình luận (0)
TH
3 tháng 2 2022 lúc 9:16

f. 5 – (x – 6) = 4(3 – 2x)

<=>5-x+6=12-8x

<=>7x=1

<=>x=\(\dfrac{1}{7}\)

g. 7 – (2x + 4) = – (x + 4)

<=>7-2x-4=-x-4

<=>x=7

h. \(2x\left(x+2\right)^2-8x^2=2\left(x-2\right)\left(x^2+2x+4\right)\)

<=>\(2x\left(x^2+4x+4\right)-8x^2=2\left(x^3-8\right)\)

<=>\(2x^3+8x^2+8x-8x^2=2x^3-16\)

<=>\(8x=-16\)

<=>x=-2

i.\(\left(x-2\right)^3+\left(3x-1\right)\left(3x+1\right)=\left(x+1\right)^3\)

<=>\(x^3-6x^2+12x+8+9x^2-1=x^3+3x^2+3x+1\)

<=>\(9x+6=0\)

<=>x=\(\dfrac{-2}{3}\)

k. (x + 1)(2x – 3) = (2x – 1)(x + 5)

<=>\(2x^2-x-3=2x^2+9x-5\)

<=>10x=2

<=>

Bình luận (0)
CD
Xem chi tiết
DD
26 tháng 4 2019 lúc 20:55

a, (x+3)^2 + 2(x-1)^2 = (3x-7)(x-2)

<=> x^2 + 6x + 9 + 2x^2 - 4x + 2 = 3x^2 - 13x + 14

<=> 15x - 3 = 0 

<=> x = 1/5

Vậy x=1/5 là nghiệm của phương trình 

b, ( x - 4)( x - 3)= (x-4)^2

Đặt x - 4 = y ta có phương trình :

y(y +1 ) = y^2

<=> y^2+y= y^2

<=> y=0

=> x- 4 =0 

<=> x=4

Vậy x=4 là nghiệm của phương trình 

Bình luận (0)
HT
Xem chi tiết
H24
20 tháng 2 2020 lúc 9:56

a, \(\left(x^2+x\right)^2+4\left(x^2+x\right)-12=0\)

\(\Leftrightarrow x^4+2x^3+x^2+4x^2+4x+12=0\)

\(\Leftrightarrow x^4+2x^3+5x^2+4x-12=0\)

\(\Leftrightarrow x^4-x^3+3x^3-3x^2+8x^2-8x+12x-12=0\)

\(\Leftrightarrow x^3\left(x-1\right)+3x^2\left(x-1\right)+8x\left(x-1\right)+12\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^3+3x^2+8x+12\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^3+2x^2+x^2+2x+6x+12\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[x^2\left(x+2\right)+x\left(x+2\right)+6\left(x+2\right)\right]\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^2+x+6\right)\left(x+2\right)\left(x-1\right)=0\)

có : \(x^2+x+6>0\)

\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}}\)

b,  \(\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+7\right)-297=0\)

\(\Leftrightarrow\left[\left(x-1\right)\left(x+5\right)\right]\left[\left(x-3\right)\left(x+7\right)\right]-297=0\)

\(\Leftrightarrow\left(x^2+4x-5\right)\left(x^2+7x-21\right)-297=0\)

đặt \(x^2+4x-13=t\)

\(\Leftrightarrow\left(t+8\right)\left(t-8\right)-297=0\)

\(\Leftrightarrow t^2-64-297=0\)

\(\Leftrightarrow t^2=361\)

\(\Leftrightarrow t=\pm19\)

có t rồi tìm x thôi

Bình luận (0)
 Khách vãng lai đã xóa