Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: 3x - 4y - 1 = 0 và điểm I(1;- 2) . Gọi (C) là đường tròn tâm I và cắt đường thẳng d tại hai điểm A và B sao cho tam giác IAB có diện tích bằng 4. Viết phương trình đường tròn (C).
Trong mặt phẳng tọa độ Oxy, tính bán kính đường tròn tâm I(1;-2) và tiếp xúc với đường thẳng d: 3x-4y-26=0
A. R = 3
B. R = 5
C. R = 9.
D. R = 3 5
Trong mặt phẳng tọa độ Oxy cho đường tròn (C) có tâm I(1;-1) và bán kính R=5. Biết rằng đường thẳng ( d ) : 3 x - 4 y + 8 = 0 cắt đường tròn (C) tại hai điểm phân biệt A, B. Tính độ dài đoạn thẳng AB
A. 8
B. 4
C. 3
D. 6
Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d' có phương trình 3 x + 4 y + 6 = 0 là ảnh của đường thẳng d có phương trình 3 x + 4 y + 1 = 0 qua phép tịnh tiến theo vectơ v → . Tìm tọa độ vectơ v → có độ dài bé nhất.
A. v → = 3 5 ; − 4 5
B. v → = − 3 5 ; − 4 5
C. v → = ( 3 ; 4 )
Đáp án B
Độ dài véc tơ v → bé nhất đúng bằng khoảng cách h giữa d và d' . h chính là khoảng cách từ M ∈ d tới N ∈ d ' sao cho M N → ⊥ u → 4 ; − 3 trong đó u → là VTCP của cả d và d' .Và khi đó: v → = M N →
Chọn M − 3 ; 2 ∈ d . Ta cần tìm N t ; − 6 − 3 t 4 ∈ d ' sao cho:
M N → t + 3 ; − 14 − 3 t 4 ⊥ u → 4 ; − 3
⇔ 4 t + 12 + 42 + 9 t 4 = 0 ⇔ t = − 18 5
⇒ M N → = − 3 5 ; − 4 5
Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng d có phương trình 3x+4y+6=0 là ảnh của đường thẳng d có phương trình 3x+4y+1=0 qua phép tịnh tiến theo vectơ v → . Tìm tọa độ vectơ v → có độ dài bé nhất.
A. v → = 3 5 ; - 4 5
B. v → = - 3 5 ; - 4 5
C. v → = 3 ; 4
D. v → = - 3 ; 4
Trong mặt phẳng tọa độ Oxy, khoảng cách từ điểm M(3;-4) đến đường thẳng △ : 3 x - 4 y - 1 = 0 là
A. 12 5
B. 8 5
C. - 24 5
D. 24 5
Trong mặt phẳng tọa độ Oxy, khoảng cách từ điểm O(0;0) đến đường thẳng d: 3x-4y-5=0 là:
A. - 1 5
B. 1 5
C. 0.
D. 1.
Trong mặt phẳng tọa độ Oxy, cho điểm C(2; -5) và đường thẳng D:3x-4y+4=0. Trên đường thẳng D hai điểm A và B đối xứng nhau qua điểm I 2 ; 5 2 sao cho diện tích tam giác ABC bằng 15. Tìm tọa độ điểm A biết điểm B có hoành độ dương.
A. A(8; 7)
B. A(4; 4)
C. A(0; 1)
D. A(-4; -2
Trong mặt phẳng hệ tọa độ oxy, cho đường tròn (C):(x-2)2+(y-3)2=100 và đường thẳng denta:3x-4y+1=0.Gọi A,B là hai giao điểm của denta và(C).Tính độ dài đoạn thẳng AB
Đường tròn (C) tâm \(O\left(2;3\right)\) bán kính \(R=10\)
Gọi I là trung điểm AB \(\Rightarrow IO\perp AB\)
\(\Rightarrow IO=d\left(O;AB\right)=\dfrac{\left|3.2-4.3+1\right|}{\sqrt{3^2+4^2}}=1\)
Áp dụng định lý Pitago:
\(IA=\sqrt{OA^2-OA^2}=\sqrt{100-1}=3\sqrt{11}\)
\(\Rightarrow AB=2IA=6\sqrt{11}\)
Trong mặt phẳng tọa độ Oxy , cho đường thẳng d: 3x-4y+1=0 . Thực hiện liên tiếp phép vị tự tâm O tỉ số k=-3 và phép tịnh tiến theo vecto v=(1,2) thì đường thẳng d biến đường thẳng d' có phương trình là ?
Trong mặt phẳng với hệ trục tọa độ Oxy, cho đường tròn (C) có phương trình x - 2 2 + y + 2 2 = 4 và đường thẳng d : 3 x + 4 y + 7 = 0 . Gọi A B, là các giao điểm của đường thẳng d với đường tròn (C) . Tính độ dài dây cung AB.
A. AB = 3 .
B. AB = 2 5 .
C. AB = 2 3 .
D. AB = 4 .