Chứng minh: \(\frac{2^x}{4^x+1}+\frac{4^x}{2^x+1}+\frac{2^x}{2^x+4^x}=\frac{3}{2}\)
chứng minh rằng
a, \(\frac{2+\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\frac{2-\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}=1\)
b, \(\frac{1}{x+\sqrt{x}}+\frac{2\sqrt{x}}{x-1}-\frac{1}{x-\sqrt{x}}=\frac{2}{\sqrt[]{x}}\)
a, \(\frac{2+\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\frac{2-\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}\)
\(=\frac{2+\sqrt{3}}{2+\sqrt{\left(\sqrt{3}+1\right)^2}}+\frac{2-\sqrt{3}}{2-\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\frac{2+\sqrt{3}}{2+\sqrt{3}+1}+\frac{2-\sqrt{3}}{2-\sqrt{3}+1}\)
\(=\frac{2+\sqrt{3}}{3+\sqrt{3}}+\frac{2-\sqrt{3}}{3-\sqrt{3}}\)
\(=\frac{\left(2+\sqrt{3}\right)\left(3-\sqrt{3}\right)+\left(2-\sqrt{3}\right)\left(3+\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}\)
\(=\frac{6+\sqrt{3}-3+6-\sqrt{3}-3}{9-3}=\frac{6}{6}=1\)
b, \(\frac{1}{x+\sqrt{x}}+\frac{2\sqrt{x}}{x-1}-\frac{1}{x-\sqrt{x}}\)
\(=\frac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x-1}\right)}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}-1+2x-\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\frac{2\left(x-1\right)}{\sqrt{x}\left(x-1\right)}=\frac{2}{\sqrt{x}}\)
Chứng minh đẳng thức:
a.\(\frac{a^3-4a^2-a+4}{a^3-7a^2+14a-8}=\frac{a+1}{a+2}\)
b.\(\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\frac{\left(x+1\right)^2}{x^2+1}\)
a: \(VT=\dfrac{a^2\left(a-4\right)-\left(a-4\right)}{\left(a-2\right)\left(a^2+2a+4\right)-7a\left(a-2\right)}\)
\(=\dfrac{\left(a-4\right)\left(a-1\right)\left(a+1\right)}{\left(a-1\right)\left(a^2-5a+4\right)}\)
\(=\dfrac{\left(a-4\right)\left(a+1\right)}{\left(a-4\right)\left(a-1\right)}=\dfrac{a+1}{a-1}=VP\)
b: \(VT=\dfrac{x^3\left(x+1\right)+\left(x+1\right)}{x^4-x^3+x^2+x^2-x+1}\)
\(=\dfrac{\left(x+1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x^2+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{\left(x+1\right)^2}{x^2+1}=VP\)
Chứng minh \(\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\frac{\left(x+1\right)^2}{x^2+1}\)
\(\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}\)
\(=\frac{x^3.\left(x+1\right)+\left(x+1\right)}{x^4-x^3+x^2+x^2-x+1}=\frac{\left(x^3+1\right).\left(x+1\right)}{x^2.\left(x^2-x+1\right)+\left(x^2-x+1\right)}=\frac{\left(x^3+1\right).\left(x+1\right)}{\left(x^2+1\right).\left(x^2-x+1\right)}\)
\(=\frac{\left(x+1\right)^2.\left(x^2-x+1\right)}{\left(x^2+1\right).\left(x^2-x+1\right)}=\frac{\left(x+1\right)^2}{x^2+1}\)
=> \(\frac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\frac{\left(x+1\right)^2}{x^2+1}\)(đpcm)
Chứng minh rằng:
a) \(\sin x - \cos x = \sqrt 2 \sin \left( {x - \frac{\pi }{4}} \right)\);
b) \(\tan \left( {\frac{\pi }{4} - x} \right) = \frac{{1 - \tan x}}{{1 + \tan x}}\;\left( {x \ne \frac{\pi }{2} + k\pi ,\;x \ne \frac{{3\pi }}{4} + k\pi ,\;k \in \mathbb{Z}} \right)\;\).
a) Ta có:
\(\sqrt 2 \sin \left( {x - \frac{\pi }{4}} \right) = \sqrt 2 \left( {\sin x\cos \frac{\pi }{4} + \cos x\sin \frac{\pi }{4}} \right) = \sqrt 2 \left( {\sin x.\frac{{\sqrt 2 }}{2} + \cos x.\frac{{\sqrt 2 }}{2}} \right) = \sin x + \cos x\)
b) Ta có:
\(\tan \left( {\frac{\pi }{4} - x} \right) = \frac{{\tan \frac{\pi }{4} - \tan x}}{{1 + \tan \frac{\pi }{4}\tan x}} = \frac{{1 - \tan x}}{{1 + \tan x}}\;\)
chứng minh đẳng thức
\(\left(\frac{x-y}{2y-x}-\frac{x^2+y^2+y-2}{x^2-xy-2y^2}\right):\frac{x^4+4x^2y^2+y^4-4}{x^2+y+xy+x}:\frac{1}{2x^2+y+2}=\frac{x+1}{2y-x}\)
cho đa thức M(x)=(\(\frac{x^3}{2}-\frac{1}{2}x^4+\frac{1}{2}x^2+\frac{1}{3}x\))-(\(-\frac{1}{2}x^4+x^2+\frac{x}{3}\))
thu gọn và chứng minh M(x) luôn nhận giá trị nguyên với mọi số nguyên x
Chứng minh đẳng thức :
(\(\frac{1}{x^2+2x+1}\left(\frac{1}{x^2}+1\right)+\frac{2}{x^3+2x^2+x}\) ) : \(\frac{1}{4x^2-x^3}\) = 4 - x
Chứng minh: \(\frac{2}{x^2-1}+\frac{4}{x^2-4}+...+\frac{20}{x^2-100}=\frac{11}{\left(x-10\right)\left(x+1\right)}+\frac{11}{\left(x-9\right)\left(x+2\right)}+...+\frac{11}{\left(x-1\right)\left(x+10\right)}\)
Vê trái:
\(=\frac{2}{\left(x-1\right)\left(x+1\right)}+\frac{4}{\left(x-2\right)\left(x+2\right)}+...+\frac{20}{\left(x-10\right)\left(x+10\right)}\)
\(=\frac{\left(x+1\right)-\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{\left(x+2\right)-\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}+...+\frac{\left(x+10\right)-\left(x-10\right)}{\left(x+10\right)\left(x-10\right)}\)
\(=\frac{1}{x-1}-\frac{1}{x+1}+\frac{1}{x-2}-\frac{1}{x+2}+...+\frac{1}{x-10}-\frac{1}{x+10}\)
\(=\left(\frac{1}{x-1}+\frac{1}{x-2}+...+\frac{1}{x-10}\right)-\left(\frac{1}{x+1}+\frac{1}{x+2}+...+\frac{1}{x+10}\right)\)
Vế phải:
\(=\frac{\left(x+1\right)-\left(x-10\right)}{\left(x-10\right)\left(x+1\right)}+\frac{\left(x+2\right)-\left(x-9\right)}{\left(x-9\right)\left(x+2\right)}+...+\frac{\left(x+10\right)-\left(x-1\right)}{\left(x-1\right)\left(x+10\right)}\)
\(=\frac{1}{x-10}-\frac{1}{x+1}+\frac{1}{x-9}-\frac{1}{x+2}+...+\frac{1}{x-1}-\frac{1}{x+10}\)
\(=\left(\frac{1}{x-1}+\frac{1}{x-2}+...+\frac{1}{x-10}\right)-\left(\frac{1}{x+1}+\frac{1}{x+2}+...+\frac{1}{x+10}\right)\) = vế phải
=> đpcm
1/ Cho \(y=\frac{x^2+\frac{1}{x^2}}{x^2-\frac{1}{x^2}}\), \(z=\frac{x^4+\frac{1}{x^4}}{x^4-\frac{1}{x^4}}\) và \(x\ne1,x\ne-1\). Hãy tính z theo y
2/ Cho xy+yz+xz=1 và x,y,z khác 1,-1. Chứng minh rằng \(\frac{x}{1-x^2}+\frac{y}{1-y^2}+\frac{z}{1-z^2}=\frac{4xyz}{\left(1-x^2\right)\left(1-y^2\right)\left(1-z^2\right)}\)