Những câu hỏi liên quan
LY
Xem chi tiết
HM
Xem chi tiết
NY
Xem chi tiết
DT
Xem chi tiết
NT
30 tháng 7 2023 lúc 13:00

a: A=y(x-4)-5(x-4)

=(x-4)(y-5)

Khi x=14 và y=5,5 thì A=(14-4)(5,5-5)=0,5*10=5

b: \(B=x\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(x-5\right)\)

Khi x=5,2 và y=4,8 thì B=(5,2+4,8)(5,2-5)

=0,2*10=2

d: Khi x=5,75 và y=4,25 thì

D=5,75^3-5,75^2*4,25+4,25^3

=8087/64

Bình luận (2)
NL
Xem chi tiết
NT
20 tháng 6 2023 lúc 15:11

a: A+B

=x^2y+xyz+7y^2-25xy-xyz+x^2y-7y^2+xy

=-24xy+2x^y

A-B=x^2y+xyz+7y^2-25xy+xzy-x^2y+7y^2-xy

=2xyz+14y^2-26xy

b: Bậc của A là 3

bậc của B là 3

c: Khi x=-3;y=-1/2;z=0 thì:

A=9*(-1/2)+0+7*(-1/2)^2-25*(-3)*(-1/2)

=-9/2+7/4-75/2

=-42+7/4=-161/4

B=(-3)*(-1)*(-1/2)*0+(-3)^2*(-1/2)-7*1/4+(-3)*(-1/2)

=-9/2-7/4+3/2

=-3-7/4=-19/4

Bình luận (0)
DT
Xem chi tiết
NT
30 tháng 7 2023 lúc 20:56

a: A=yx-4y-5x+20

=y(x-4)-5(x-4)

=(x-4)(y-5)

Khi x=14 và y=5,5 thì A=(14-4)(5,5-5)=0,5*10=5

b: \(B=x\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(x-5\right)\)

Khi x=5,2 và y=4,8 thì B=(5,2+4,8)(5,2-5)

=0,2*10=2

d: Khi x=5,75 và y=4,25 thì

D=5,75^3-5,75^2*4,25+4,25^3

=8087/64

c: \(D=xyz-xy-yz-xz+x+y+z-1\)

=xy(z-1)-yz+y-xz+z+x-1

=xy(z-1)-y(z-1)-z(x-1)+(x-1)

=(z-1)(xy-y)-(x-1)(z-1)

=(z-1)(xy-y-1)

=(11-1)(9*10-10-1)

=10*79=790

Bình luận (0)
JB
Xem chi tiết
BH
Xem chi tiết
AV
Xem chi tiết
H24
8 tháng 7 2019 lúc 15:54

\(A=\sqrt{\frac{x}{2y^2z^2+xyz}}+\sqrt{\frac{y}{2x^2z^2+xyz}}+\sqrt{\frac{z}{2x^2y^2+xyz}}\)

\(A=\sqrt{\frac{x^2}{2xyz.yz+xz.xy}}+\sqrt{\frac{y^2}{2xyz.xz+xy.yz}}+\sqrt{\frac{z^2}{2xyz.xy+xz.yz}}\)

\(A=\sqrt{\frac{x^2}{yz\left(xy+yz+xz\right)+xz.xy}}+\sqrt{\frac{y^2}{xz\left(xy+yz+xz\right)+xy.yz}}+\sqrt{\frac{z^2}{xy\left(xy+yz+xz\right)+xz.yz}}\)

\(A=\sqrt{\frac{x^2}{\left(yz+xy\right)\left(yz+xz\right)}}+\sqrt{\frac{y^2}{\left(xz+xy\right)\left(xz+yz\right)}}+\sqrt{\frac{z^2}{\left(xy+yz\right)\left(xy+xz\right)}}\)

Áp dụng bđt \(\sqrt{ab}\le\frac{a+b}{2}\) ta có:

\(2A\le\frac{x}{yz+xy}+\frac{x}{yz+xz}+\frac{y}{xz+xy}+\frac{y}{xz+yz}+\frac{z}{xy+yz}+\frac{z}{xy+xz}\)

\(=\frac{x+z}{yz+xy}+\frac{x+y}{yz+xz}+\frac{y+z}{xz+xy}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

Mà: \(xy+yz+xz=2xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)

\(\Rightarrow2A\le2\Rightarrow A\le1."="\Leftrightarrow a=b=c=\frac{3}{2}\)

Bình luận (0)