Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NA
Xem chi tiết
NT
12 tháng 5 2022 lúc 19:09

undefined

Bình luận (0)
NA
Xem chi tiết
NT
12 tháng 5 2022 lúc 19:09

undefined

Bình luận (0)
NA
Xem chi tiết
NT
12 tháng 5 2022 lúc 19:08

Đặt \(D=1+4+...+4^{2019}\)

\(\Leftrightarrow4D=4+4^2+...+4^{2020}\)

\(\Leftrightarrow D=\dfrac{4^{2020}-1}{3}\)

\(C=75\cdot D+25\)

\(=25\left(4^{2020}-1\right)+25=25\cdot4\cdot4^{2019}⋮100\)

Bình luận (0)
NM
Xem chi tiết
NT
19 tháng 8 2017 lúc 20:04

a, Ta có: \(4\equiv1\left(mod3\right)\)

\(\Rightarrow4^{2018}\equiv1\left(mod3\right)\)

\(\Rightarrow4^{2018}-1⋮3\)

b, Ta có: \(5\equiv1\left(mod4\right)\)

\(\Rightarrow5^{2019}\equiv1\left(mod4\right)\)

\(\Rightarrow5^{2019}-1⋮4\)

c, \(4\equiv-1\left(mod5\right)\)

\(\Rightarrow4^{2019}\equiv-1\left(mod5\right)\)

\(\Rightarrow4^{2019}+1⋮5\)

d, \(5\equiv-1\left(mod6\right)\)

\(\Rightarrow5^{2017}\equiv-1\left(mod6\right)\)

\(\Rightarrow5^{2017}+1⋮6\)

Bình luận (0)
PT
19 tháng 8 2017 lúc 20:05

1. Vì \(4\) chia \(3\)\(1\)

\(\Rightarrow4^{2018}\) chia \(3\)\(1^{2018}=1.\)

\(\Rightarrow4^{2018}-1\) chia hết cho \(3.\)

Bình luận (0)
TL
15 tháng 4 2023 lúc 6:42

a, Ta có: 4≡1(mod3)4≡1(���3)

⇒42018≡1(mod3)⇒42018≡1(���3)

⇒42018−1⋮3⇒42018−1⋮3

b, Ta có: 5≡1(mod4)5≡1(���4)

⇒52019≡1(mod4)⇒52019≡1(���4)

⇒52019−1⋮4⇒52019−1⋮4

c, 4≡−1(mod5)4≡−1(���5)

⇒42019≡−1(mod5)⇒42019≡−1(���5)

⇒42019+1⋮5⇒42019+1⋮5

d, 5≡−1(mod6)5≡−1(���6)

⇒52017≡−1(mod6)⇒52017≡−1(���6)

⇒52017+1⋮6

Bình luận (0)
SN
Xem chi tiết
MV
17 tháng 12 2022 lúc 22:44

 4 + 4+ 4+ 4+ ... + 423 + 424

=  (4 + 4+ 43) + ... + (422 + 423 + 424)

=   4x(1+4+42) + ... + 422x(1+4+42)

=   4x21 + ... + 422x21

=   (4+...+422)x21

Đúng thì nhớ tick cho mình nha,mình cảm ơn

Bình luận (0)
FF
Xem chi tiết
VN
Xem chi tiết
TA
20 tháng 8 2020 lúc 20:25

Đặt \(A_1=\left(1+4+4^2+...+4^{2016}+4^{2017}\right)\)

Ta có: \(A_1=\left(1+4+4^2+...+4^{2016}+4^{2017}\right)\)

   \(\Leftrightarrow4A_1=4+4^2+4^3+...+4^{2017}+4^{2018}\)

Lấy \(4A_1-A_1\)ta có:

      \(4A_1-A_1=\left(4+4^2+4^3+...+4^{2017}+4^{2018}\right)-\left(1+4+4^2+...+4^{2016}+4^{2017}\right)\)

\(\Leftrightarrow3A_1=4^{2018}-1\)

\(\Leftrightarrow A_1=\frac{4^{2018}-1}{3}\)

Thay \(A_1=\frac{4^{2018}-1}{3}\)vào biểu thức A, ta có: 

         \(A=75.\left(\frac{4^{2018}-1}{3}\right)+25\)

  \(\Leftrightarrow A=25.\left(4^{2018}-1\right)+25\)

  \(\Leftrightarrow A=25.4^{2018}⋮4^{2018}\)

Vậy \(A⋮4^{2018}\)

chúc bn hok tốt

Bình luận (0)
 Khách vãng lai đã xóa
VN
20 tháng 8 2020 lúc 20:46

thanks bro

Bình luận (0)
 Khách vãng lai đã xóa
TA
20 tháng 8 2020 lúc 20:59

you're welcome

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
LB
29 tháng 10 2017 lúc 19:32

khó quá hè oho

Bình luận (1)
LB
29 tháng 10 2017 lúc 20:03

a)20172018=...78=...4

20182019=...89=...8

20192020=...90=...0

20202021=...0

Vì 4+8+0+8=...0

Vậy A chia hết cho 10

Bình luận (3)
TN
Xem chi tiết