cho P=1 trên căn x-3 tìm số nguyên tố để P<0
( căn x trên ( căn x - 1 ) ) - ( 1 trên (x- căn x))
a. Tìm điều kiện x để P được xác định
b. Rút gọn P
c. Tìm tất cả các số thực x sao cho x> 1/3 đồng thơi phải nhận giá trị nguyên
cậu có thể viết lại cho dễ hiểu hơn ko?
\(\frac{\sqrt{x}}{\sqrt{x}-1}\)\(-\frac{1}{x-\sqrt{x}}\)
a. ĐKXĐ là\(\hept{\begin{cases}x\ge0\\\sqrt{x}-1\ne0\\x-\sqrt{x}\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne1\\\sqrt{x}\left(\sqrt{x}-1\right)\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x>0\\x\ne1\\x\ne0\end{cases}}}\)
b. ta có:
\(P=\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\left(\sqrt{x}+1\right)\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}}\)
c. đồng thời nhận giá trị nguyên là x nguyên hay P nguyên vậy?
Cho B= căn x+1 / căn x-3. Tìm số nguyên để B có giá trị là 1 số nguyên
Cho p=(2 căn x -9)/(căn x-2)(căn x-3) - (căn x+3)/(căn x-2) - (2 căn x+1)/(3-căn) ( x > 0; x ≠ 4, x ≠ 9)
a. Rút gọn P
b. Tìm x để P = 5
c. Tìm x nguyên để P có giá trị là số tự nhiên.
Bài 1 : Tìm số nguyên tố p để p^2+41 là số nguyên tố
Bài2: Tìm số nguyên tố p để p^2+4vàp^2-4 đều là số nguyên tố
Bài3: Tổng 5 số nguyên tố là 142 . Tìm số nguyên tố nhỏ nhất trong 5 số trên
Bài4: tìm 2 số nguyên tố sao cho tổng và tích của chúng đều là số nguyên tố
Bài 1: p = 4
Bài 2: p =3
Bài 3. p = 2
Bài 4: ....... tự giải đi
Lần sau hỏi bài của lớp 6 thì đừng hỏi ở đây
1,Tìm số dư khi chia 1 số nguyên tố lớn hơn 2 cho 4
2, Tìm số nguyên tố p để p + 3 và p + 5 là các số nguyên tố
3, Tìm số nguyên tố p để p + 4 và 4.p+1 cũng là các số nguyên tố
.................................................................................................
1. Tìm x;y ∈ N* để \(x^4+4y^4\) là số nguyên tố.
2. Cho n ∈ N* CMR: \(n^4+4^n\) là hợp số với mọi n>1.
3. Cho biết p là số nguyên tố thỏa mãn: \(p^3-6\) và \(2p^3+5\) là các số nguyên tố. CMR: \(p^2+10\) cũng là số nguyên tố.
4. Tìm tất cả các số nguyên tố có 3 chữ số sao cho nếu ta thay đổi vị trí bất kì ta vẫn thu được số nguyên tố.
1.
\(x^4+4y^4=x^4+4x^2y^2+y^4-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2\)
\(=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)
Do x, y nguyên dương nên số đã cho là SNT khi:
\(x^2-2xy+2y^2=1\Rightarrow\left(x-y\right)^2+y^2=1\)
\(y\in Z^+\Rightarrow y\ge1\Rightarrow\left(x-y\right)^2+y^2\ge1\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=1\)
Thay vào kiểm tra thấy thỏa mãn
2. \(N=n^4+4^n\)
- Với n chẵn hiển nhiên N là hợp số
- Với \(n\) lẻ: \(\Rightarrow n=2k+1\)
\(N=n^4+4^n=n^4+4^{2k+1}=n^4+4.4^{2k}+4n^2.4^k-n^2.4^{k+1}\)
\(=\left(n^2+2.4^k\right)^2-\left(n.2^{k+1}\right)^2=\left(n^2+2.4^k-n.2^{k+1}\right)\left(n^2+2.4^k+n.2^{k+1}\right)\)
Mặt khác:
\(n^2+2.4^k-n.2^{k+1}\ge2\sqrt{2n^2.4^k}-n.2^{k+1}=2\sqrt{2}n.2^k-n.2^{k+1}\)
\(=n.2^{k+1}\left(\sqrt{2}-1\right)\ge2\left(\sqrt{2}-1\right)>1\)
\(\Rightarrow N\) là tích của 2 số dương lớn hơn 1
\(\Rightarrow\) N là hợp số
Bài 4 chắc không có cách "đại số" nào (tức là dựa vào lý luận chia hết tổng quát) để giải. Mình nghĩ vậy (có lẽ có, nhưng mình ko biết).
Chắc chỉ sáng lọc và loại trừ theo quy tắc kiểu: do đổi vị trí bất kì đều là SNT nên không thể chứa các chữ số chẵn và chữ số 5, như vậy số đó chỉ có thể chứa các chữ số 1,3,7,9
Nó cũng không thể chỉ chứa các chữ số 3 và 9 (sẽ chia hết cho 3)
Từ đó sàng lọc được các số: 113 (và các số đổi vị trí), 337 (và các số đổi vị trí)
Tìm số nguyên x để: 6 nhân căn bậc hai của x +1 chia hết cho 2 nhân căn bậc hai của x -3
Cho A=cănx+1/căn x-1 tìm số nguyên x để A bằng số nguyên
tìm số nguyên x để A có giá trị là 1 số nguyên : căn bậc 2 của x +1 /căn bậc 2 của x -3 (x>=0)
Tìm số nguyên x để A là số nguyên biết:
Căn x -5 phần căn x+3